ﻻ يوجد ملخص باللغة العربية
Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. In general the absorption in the typical studied materials can be neglected and this technique is limited to the measurement of the reflectivity only. In the case of strongly absorbing nuclei the number of neutrons is not conserved and the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, generally in very small quantities, are used as a label for buried layers. Nowadays the importance of highly absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more and more active also due to the 3He-shortage. In this manuscript we extend the neutron-induced fluorescence technique to the study of thick layers of highly absorbing materials; in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic, however the subtle relationship between the reflection and the absorption of neutrons is not widely known, in particular when a strong absorption is present. The theory for a general stack of absorbing layers has been developed and compared to measurements. This new technique has potential as a tool for characterization of highly absorbing layers. We also report on the requirements that a 10B4C layer must fulfill in order to be employed as a converter in neutron detection.
Neutron scattering techniques offer a unique combination of structural and the dynamic information of atomic and molecular systems over a wide range of distances and times. The increasing complexity in science investigations driven by technological a
We have determined the depth-resolved magnetization structures of a series of highly ordered Sr$_{2}$CrReO$_{6}$ (SCRO) ferrimagnetic epitaxial films via combined studies of x-ray reflectometry, polarized neutron reflectometry and SQUID magnetometry.
Polarized neutron reflectometry (PNR) is a powerful technique to interrogate the structures of multilayered magnetic materials with depth sensitivity and nanometer resolution. However, reflectometry profiles often inhabit a complicated objective func
An instrument and software algorithm is described for the purpose of characterization of large single crystals at the Alignment Facility (ALF) of the ISIS spallation neutron source. We describe a method for both characterizing the quality of the samp
The Parallel Nanowire Detector (PND) is a photon number resolving (PNR) detector which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the p