ﻻ يوجد ملخص باللغة العربية
The Parallel Nanowire Detector (PND) is a photon number resolving (PNR) detector which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. PNDs were fabricated on 3-4 nm thick NbN films grown on MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. PNDs showed a counting rate of 80 MHz and a pulse duration as low as 660ps full width at half maximum (FWHM). Building the histograms of the photoresponse peak, no multiplication noise buildup is observable. Electrical and optical equivalent models of the device were developed in order to study its working principle, define design guidelines, and develop an algorithm to estimate the photon number statistics of an unknown light. In particular, the modeling provides novel insight of the physical limit to the detection efficiency and to the reset time of these detectors. The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.
We demonstrate high-performance nanowire superconducting single photon detectors (SSPDs) on ultrathin NbN films grown at a temperature compatible with monolithic integration. NbN films ranging from 150nm to 3nm in thickness were deposited by dc magne
A number of applications in basic science and technology would benefit from high fidelity photon number resolving photodetectors. While some recent experimental progress has been made in this direction, the requirements for true photon number resolut
We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of th
Superconducting nanowire single-photon detectors (SNSPDs) perform single-photon counting with exceptional sensitivity and time resolution at near-infrared wavelengths. State-of-the-art SNSPDs, based on 100 nm-wide, 4 to 5 nm thick NbN nanowires, are
The optical-to-electrical conversion, which is the basis of optical detectors, can be linear or nonlinear. When high sensitivities are needed single-photon detectors (SPDs) are used, which operate in a strongly nonlinear mode, their response being in