ﻻ يوجد ملخص باللغة العربية
Starting from a Su-Schrieffer-Heeger-like model inferred from first-principles simulations, we show that the metal-insulator transition in In/Si(111) is a first-order grand canonical Peierls transition in which the substrate acts as an electron reservoir for the wires. This model explains naturally the existence of a metastable metallic phase over a wide temperature range below the critical temperature and the sensitivity of the transition to doping. Raman scattering experiments corroborate the softening of the two Peierls deformation modes close to the transition.
We present a generic grand-canonical theory for the Peierls transition in atomic wires deposited on semiconducting substrates such as In/Si(111) using a mean-field solution of the one-dimensional Su-Schrieffer-Heeger model. We show that this simple l
We analyse a picture of transport in which two large but finite charged electrodes discharge across a nanoscale junction. We identify a functional whose minimisation, within the space of all bound many-body wavefunctions, defines an instantaneous ste
We demonstrate the injection of pure valley-orbit currents in multi-valley semiconductors and present the theory of this effect. We studied photo-induced transport in $n$-doped (111)-oriented silicon metal-oxide-semiconductor field effect transistors
The metal-insulator transition observed in the In/Si(111)-4x1 reconstruction is studied by means of ab initio calculations of a simplified model of the surface. Different surface bands are identified and classified according to their origin and their
We analyze the strain state of GaN nanowire ensembles by x-ray diffraction. The nanowires are grown by molecular beam epitaxy on a Si(111) substrate in a self-organized manner. On a macroscopic scale, the nanowires are found to be free of strain. How