ﻻ يوجد ملخص باللغة العربية
A broad range of quantum optimisation problems can be phrased as the question whether a specific system has a ground state at zero energy, i.e. whether its Hamiltonian is frustration free. Frustration-free Hamiltonians, in turn, play a central role for constructing and understanding new phases of matter in quantum many-body physics. Unfortunately, determining whether this is the case is known to be a complexity-theoretically intractable problem. This makes it highly desirable to search for efficient heuristics and algorithms in order to, at least, partially answer this question. Here we prove a general criterion - a sufficient condition - under which a local Hamiltonian is guaranteed to be frustration free by lifting Shearers theorem from classical probability theory to the quantum world. Remarkably, evaluating this condition proceeds via a fully classical analysis of a hard-core lattice gas at negative fugacity on the Hamiltonians interaction graph which, as a statistical mechanics problem, is of interest in its own right. We concretely apply this criterion to local Hamiltonians on various regular lattices, while bringing to bear the tools of spin glass physics which permit us to obtain new bounds on the SAT/UNSAT transition in random quantum satisfiability. These also lead us to natural conjectures for when such bounds will be tight, as well as to a novel notion of universality for these computer science problems. Besides providing concrete algorithms leading to detailed and quantitative insights, this underscores the power of marrying classical statistical mechanics with quantum computation and complexity theory.
With the development of quantum many-body simulator, Hamiltonian tomography has become an increasingly important technique for verification of quantum devices. Here we investigate recovering the Hamiltonians of two spin chains with 2-local interactio
Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small
In recent attempts to observe axion electrodynamics, much effort has focused on trilayer heterostructures of magnetic topological insulators, and in particular on the examination of a so-called zero Hall plateau, which has misguidedly been overstated
The phenomenon of localization usually happens due to the existence of disorder in a medium. Nevertheless, certain quantum systems allow dynamical localization solely due to the nature of internal interactions. We study a discrete time quantum walker
Motivated by recent progress of quantum technologies, we study a discretized quantum adiabatic process for a one-dimensional free fermion system described by a variational wave function, i.e., a parametrized quantum circuit. The wave function is comp