ﻻ يوجد ملخص باللغة العربية
We consider the asymmetric simple exclusion process (ASEP) on the one-dimensional lattice. The particles can be created/annihilated at the boundaries with time-dependent rate. These boundary dynamics are properly accelerated. We prove the hydrodynamic limit of the particle density profile, under the hyperbolic space-time rescaling, evolves with the entropy solution to Burgers equation with Dirichlet boundary conditions. The boundary conditions are characterised by boundary entropy flux pair.
We study the one-dimensional asymmetric simple exclusion process on the lattice ${1,dots,N}$ with creation/annihilation at the boundaries. The boundary rates are time dependent and change on a slow time scale $N^{-a}$ with $a>0$. We prove that at the
We study mixing times of the symmetric and asymmetric simple exclusion process on the segment where particles are allowed to enter and exit at the endpoints. We consider different regimes depending on the entering and exiting rates as well as on the
We obtain the exact large deviation functions of the density profile and of the current, in the non-equilibrium steady state of a one dimensional symmetric simple exclusion process coupled to boundary reservoirs with slow rates. Compared to earlier r
Consider a system of particles performing nearest neighbor random walks on the lattice $ZZ$ under hard--core interaction. The rate for a jump over a given bond is direction--independent and the inverse of the jump rates are i.i.d. random variables be
We construct an exclusion process with Bernoulli product invariant measure and having, in the diffusive hydrodynamic scaling, a non symmetric diffusion matrix, that can be explicitly computed. The antisymmetric part does not affect the evolution of t