ﻻ يوجد ملخص باللغة العربية
Just as string T-duality originates from transforming field equations into Bianchi identities on the string worldsheet, so it has been suggested that M-theory U-dualities originate from transforming field equations into Bianchi identities on the membrane worldvolume. However, this encounters a problem unless the target space has dimension $D = p + 1$. We identify the problem to be the nonintegrability of the U-duality transformation assigned to the pull-back map. Just as a double geometry renders manifest the $O(D,D)$ string T-duality, here we show in the case of the M2-brane in $D = 3$ that a generalised geometry renders manifest the $SL(3) times SL(2)$ U-duality. In the case of M2-brane in $D=4$, with and without extra target space coordinates, we show that only the ${rm GL}(4,R)ltimes R^4$ subgroup of the expected $SL(5,R)$ U-duality symmetry is realised.
Motivated by a recent progress in studying the duality-symmetric models of nonlinear electrodynamics, we revert to the auxiliary tensorial (bispinor) field formulation of the O(2) duality proposed by us in arXiv:hep-th/0110074, arXiv:hep-th/0303192.
In this paper we discuss $3d$ ${cal N}=2$ supersymmetric gauge theories and their IR dualities when they are compactified on a circle of radius $r$, and when we take the $2d$ limit in which $rto 0$. The $2d$ limit depends on how the mass parameters a
In this paper, we investigate the properties of a membrane in the M5-brane background. Through solving the classical equations of motion of the membrane, we can understand the classical dynamics of the membrane in this background.
We describe D=4 twistorial membrane in terms of two twistorial three-dimensional world volume fields. We start with the D-dimensional p-brane generalizations of two phase space string formulations: the one with $p+1$ vectorial fourmomenta, and the se
We show that string theory on a compact negatively curved manifold, preserving a U(1)^{b_1} winding symmetry, grows at least b_1 new effective dimensions as the space shrinks. The winding currents yield a D-dual description of a Riemann surface of ge