ترغب بنشر مسار تعليمي؟ اضغط هنا

From Dirac combs to Fourier-positivity

79   0   0.0 ( 0 )
 نشر من قبل Robi Peschanski
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by various problems in physics and applied mathematics, we look for constraints and properties of real Fourier-positive functions, i.e. with positive Fourier transforms. Properties of the Dirac comb distribution and of its tensor products in higher dimensions lead to Poisson resummation, allowing for a useful approximation formula of a Fourier transform in terms of a limited number of terms. A connection with the Bochner theorem on positive definiteness of Fourier-positive functions is discussed. As a practical application, we find simple and rapid analytic algorithms for checking Fourier-positivity in 1- and (radial) 2-dimensions among a large variety of real positive functions. This may provide a step towards a classification of positive positive-definite functions.



قيم البحث

اقرأ أيضاً

Characterizing in a constructive way the set of real functions whose Fourier transforms are positive appears to be yet an open problem. Some sufficient conditions are known but they are far from being exhaustive. We propose two constructive sets of n ecessary conditions for positivity of the Fourier transforms and test their ability of constraining the positivity domain. One uses analytic continuation and Jensen inequalities and the other deals with Toeplitz determinants and the Bochner theorem. Applications are discussed, including the extension to the two-dimensional Fourier-Bessel transform and the problem of positive reciprocity, i.e. positive functions with positive transforms.
The quantum vacuum energy for a hybrid comb of Dirac $delta$-$delta$ potentials is computed using the energy of the single $delta$-$delta$ potential over the real line that makes up the comb. The zeta function of a comb periodic potential is the cont inuous sum of zeta functions over the dual primitive cell of Bloch quasi-momenta. The result obtained for the quantum vacuum energy is non-perturbative in the sense that the energy function is not analytical for small couplings
Fourier-positivity, i.e. the mathematical property that a function has a positive Fourier transform, can be used as a constraint on the parametrization of QCD dipole-target cross-sections or Wilson line correlators in transverse position (r) space. T hey are Bessel transforms of positive transverse momentum dependent gluon distributions. Using mathematical Fourier-positivity constraints on the limit r -> 0 behavior of the dipole amplitudes, we identify the common origin of the violation of Fourier-positivity for various, however phenomenologically convenient, dipole models. It is due to the behavior r^{2+epsilon}, epsilon>0, softer, even slightly, than color transparency. Fourier-positivity seems thus to conflict with the present dipole formalism when it includes a QCD running coupling constant alpha(r).
The diphoton channel at lepton colliders, $e^+e^- (mu^+mu^-) to gamma gamma$, has a remarkable feature that the leading new physics contribution comes only from dimension-eight operators. This contribution is subject to a set of positivity bounds, de rived from fundamental principles of Quantum Field Theory, such as unitarity, locality and analyticity. These positivity bounds are thus applicable to the most direct observable -- the diphoton cross sections. This unique feature provides a clear, robust, and unambiguous test of these principles. We estimate the capability of various future lepton colliders in probing the dimension-eight operators and testing the positivity bounds in this channel. We show that positivity bounds can lift certain degeneracies among the effective operators and significantly change the perspectives of a global analysis. We also perform a combined analysis of the $gammagamma/Zgamma/ZZ$ processes in the high energy limit and point out the important interplay among them.
Let $$L_0=suml_{j=1}^nM_j^0D_j+M_0^0,,,,,D_j=frac{1}{i}frac{pa}{paxj}, quad xinRn,$$ be a constant coefficient first-order partial differential system, where the matrices $M_j^0$ are Hermitian. It is assumed that the homogeneous part is stron gly propagative. In the nonhomegeneous case it is assumed that the operator is isotropic . The spectral theory of such systems and their potential perturbations is expounded, and a Limiting Absorption Principle is obtained up to thresholds. Special attention is given to a detailed study of the Dirac and Maxwell operators. The estimates of the spectral derivative near the thresholds are based on detailed trace estimates on the slowness surfaces. Two applications of these estimates are presented: begin{itemize} item Global spacetime estimates of the associated evolution unitary groups, that are also commonly viewed as decay estimates. In particular the Dirac and Maxwell systems are explicitly treated. item The finiteness of the eigenvalues (in the spectral gap) of the perturbed Dirac operator is studied, under suitable decay assumptions on the potential perturbation. end{itemize}
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا