ﻻ يوجد ملخص باللغة العربية
We suggest and demonstrate a protocol which suppresses dephasing due to the low-frequency noise by qubit motion, i.e., transfer of the logical qubit of information in a system of $n geq 2$ physical qubits. The protocol requires only the nearest-neighbor coupling and is applicable to different qubit structures. We further analyze its effectiveness against noises with arbitrary correlations. Our analysis, together with experiments using up to three superconducting qubits, shows that for the realistic uncorrelated noises, qubit motion increases the dephasing time of the logical qubit as $sqrt{n}$. In general, the protocol provides a diagnostic tool to measure the noise correlations.
We have studied the dephasing of a superconducting flux-qubit coupled to a DC-SQUID based oscillator. By varying the bias conditions of both circuits we were able to tune their effective coupling strength. This allowed us to measure the effect of suc
Unwanted interaction between a quantum system and its fluctuating environment leads to decoherence and is the primary obstacle to establishing a scalable quantum information processing architecture. Strategies such as environmental and materials engi
We demonstrate time resolved driving of two-photon blue sideband transitions between superconducting qubits and a transmission line resonator. Using the sidebands, we implement a pulse sequence that first entangles one qubit with the resonator, and s
Coherent spin states in semiconductor quantum dots offer promise as electrically controllable quantum bits (qubits) with scalable fabrication. For few-electron quantum dots made from gallium arsenide (GaAs), fluctuating nuclear spins in the host latt
We analyze the stochastic evolution and dephasing of a qubit within the quantum jump (QJ) approach. It allows one to treat individual realizations of inelastic processes, and in this way it provides solutions, for instance, to problems in quantum the