ﻻ يوجد ملخص باللغة العربية
We analyze the stochastic evolution and dephasing of a qubit within the quantum jump (QJ) approach. It allows one to treat individual realizations of inelastic processes, and in this way it provides solutions, for instance, to problems in quantum thermodynamics and distributions in statistical mechanics. As a solvable example, we study a qubit in the weak dissipation limit, and demonstrate that dephasing and relaxation render the Jarzynski and Crooks fluctuation relations (FRs) of non-equilibrium thermodynamics intact. On the contrary, the standard two-measurement protocol, taking into account only the fluctuations of the internal energy $U$, leads to deviations in FRs under the same conditions. We relate the average $langle e^{-beta U} rangle $ (where $beta$ is the inverse temperature) with the qubits relaxation and dephasing rates, and discuss this relationship for different mechanisms of decoherence.
Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler
We discuss a qubit weakly coupled to a finite-size heat bath (calorimeter) from the point of view of quantum thermodynamics. The energy deposited to this environment together with the state of the qubit provides a basis to analyze the heat and work s
In this work, we show that the dissipation in a many-body system under an arbitrary non-equilibrium process is related to the R{e}nyi divergences between two states along the forward and reversed dynamics under very general family of initial conditio
We suggest and demonstrate a protocol which suppresses dephasing due to the low-frequency noise by qubit motion, i.e., transfer of the logical qubit of information in a system of $n geq 2$ physical qubits. The protocol requires only the nearest-neigh
Unwanted interaction between a quantum system and its fluctuating environment leads to decoherence and is the primary obstacle to establishing a scalable quantum information processing architecture. Strategies such as environmental and materials engi