ترغب بنشر مسار تعليمي؟ اضغط هنا

AGT and the Segal-Sugawara construction

86   0   0.0 ( 0 )
 نشر من قبل Erik Carlsson
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Erik Carlsson




اسأل ChatGPT حول البحث

The conjectures of Alday, Gaiotto and Tachikawa and its generalizations have been mathematically formulated as the existence of an action of a $W$-algebra on the cohomology or $K$-theory of the instanton moduli space, together with a Whitakker vector. However, the original conjectures also predict intertwining properties with the natural higher rank version of the $Ext^1$ operator which was previously studied by Okounkov and the author in [CO], a result which is now sometimes referred to as AGT in rank one [Alb,PSS]. Physically, this corresponds to incorporating matter in the Nekrasov partition functions, an obviously important feature in the physical theory. It is therefore of interest to study how the $Ext^1$ operator relates to the aforementioned structures on cohomology in higher rank, and if possible to find a formulation from which the AGT conjectures follow as a corollary. In this paper, we carry out something analogous using a modified Segal-Sugawara construction for the $hat{mathfrak{sl}}_2mathbb{C}$ structure that appears in Okounkov and Nekrasovs proof of Nekrasovs conjecture [NO] for rank two. This immediately implies the AGT identities when the central charge is one, a case which is of particular interest for string theorists, and because of the natural appearance of the Seiberg-Witten curve in this setup, see for instance Dijkgraaf and Vafa [DV], as well as [IKV].



قيم البحث

اقرأ أيضاً

70 - A. I. Molev 2020
We consider the centers of the affine vertex algebras at the critical level associated with simple Lie algebras. We derive new formulas for generators of the centers in the classical types. We also give a new formula for the Capelli-type determinant for the symplectic Lie algebras and calculate the Harish-Chandra images of the Casimir elements arising from the characteristic polynomial of the matrix of generators of each classical Lie algebra.
98 - A. I. Molev 2020
For every simple Lie algebra $mathfrak{g}$ we consider the associated Takiff algebra $mathfrak{g}^{}_{ell}$ defined as the truncated polynomial current Lie algebra with coefficients in $mathfrak{g}$. We use a matrix presentation of $mathfrak{g}^{}_{e ll}$ to give a uniform construction of algebraically independent generators of the center of the universal enveloping algebra ${rm U}(mathfrak{g}^{}_{ell})$. A similar matrix presentation for the affine Kac--Moody algebra $widehat{mathfrak{g}}^{}_{ell}$ is then used to prove an analogue of the Feigin--Frenkel theorem describing the center of the corresponding affine vertex algebra at the critical level. The proof relies on an explicit construction of a complete set of Segal--Sugawara vectors for the Lie algebra $mathfrak{g}^{}_{ell}$.
It is known by results of Dyckerhoff-Kapranov and of Galvez--Carrillo-Kock-Tonks that the output of the Waldhausen S.-construction has a unital 2-Segal structure. Here, we prove that a certain S.-functor defines an equivalence between the category of augmented stable double categories and the category of unital 2-Segal sets. The inverse equivalence is described explicitly by a path construction. We illustrate the equivalence for the known examples of partial monoids, cobordism categories with genus constraints and graph coalgebras.
In a previous paper, we showed that a discrete version of the $S_bullet$-construction gives an equivalence of categories between unital 2-Segal sets and augmented stable double categories. Here, we generalize this result to the homotopical setting, b y showing that there is a Quillen equivalence between a model category for unital 2-Segal objects and a model category for augmented stable double Segal objects which is given by an $S_bullet$-construction. We show that this equivalence fits together with the result in the discrete case and briefly discuss how it encompasses other known $S_bullet$-constructions.
89 - Seok-Jin Kang 2017
Using the twisted denominator identity, we derive a closed form root multiplicity formula for all symmetrizable Borcherds-Bozec algebras and discuss its applications including the case of Monster Borcherds-Bozec algebra. In the second half of the pap er, we provide the Schofield constuction of symmetric Borcherds-Bozec algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا