ترغب بنشر مسار تعليمي؟ اضغط هنا

Casimir elements and Sugawara operators for Takiff algebras

99   0   0.0 ( 0 )
 نشر من قبل Alexander Molev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. I. Molev




اسأل ChatGPT حول البحث

For every simple Lie algebra $mathfrak{g}$ we consider the associated Takiff algebra $mathfrak{g}^{}_{ell}$ defined as the truncated polynomial current Lie algebra with coefficients in $mathfrak{g}$. We use a matrix presentation of $mathfrak{g}^{}_{ell}$ to give a uniform construction of algebraically independent generators of the center of the universal enveloping algebra ${rm U}(mathfrak{g}^{}_{ell})$. A similar matrix presentation for the affine Kac--Moody algebra $widehat{mathfrak{g}}^{}_{ell}$ is then used to prove an analogue of the Feigin--Frenkel theorem describing the center of the corresponding affine vertex algebra at the critical level. The proof relies on an explicit construction of a complete set of Segal--Sugawara vectors for the Lie algebra $mathfrak{g}^{}_{ell}$.



قيم البحث

اقرأ أيضاً

70 - A. I. Molev 2020
We consider the centers of the affine vertex algebras at the critical level associated with simple Lie algebras. We derive new formulas for generators of the centers in the classical types. We also give a new formula for the Capelli-type determinant for the symplectic Lie algebras and calculate the Harish-Chandra images of the Casimir elements arising from the characteristic polynomial of the matrix of generators of each classical Lie algebra.
We obtain Koszul-type dualities for categories of graded modules over a graded associative algebra which can be realized as the semidirect product of a bialgebra coinciding with its degree zero part and a graded module algebra for the latter. In part icular, this applies to graded representations of the universal enveloping algebra of the Takiff Lie algebra (or the truncated current algebra) and its (super)analogues, and also to semidirect products of quantum groups with braided symmetric and exterior module algebras in case the latter are flat deformations of classical ones.
75 - A. I. Molev , E. Ragoucy 2019
We introduce a new family of Poisson vertex algebras $mathcal{W}(mathfrak{a})$ analogous to the classical $mathcal{W}$-algebras. The algebra $mathcal{W}(mathfrak{a})$ is associated with the centralizer $mathfrak{a}$ of an arbitrary nilpotent element in $mathfrak{gl}_N$. We show that $mathcal{W}(mathfrak{a})$ is an algebra of polynomials in infinitely many variables and produce its free generators in an explicit form. This implies that $mathcal{W}(mathfrak{a})$ is isomorphic to the center at the critical level of the affine vertex algebra associated with $mathfrak{a}$.
We investigate various ways to define an analogue of BGG category $mathcal{O}$ for the non-semi-simple Takiff extension of the Lie algebra $mathfrak{sl}_2$. We describe Gabriel quivers for blocks of these analogues of category $mathcal{O}$ and prove extension fullness of one of them in the category of all modules.
We give a complete study of the Clifford-Weyl algebra ${mathcal C}(n,2k)$ from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that ${mathcal C}(n,2k)$ is rigid when $n$ is even or when $k eq 1$. We find all non-trivial deformations of ${mathcal C}(2n+1,2)$ and study their representations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا