ﻻ يوجد ملخص باللغة العربية
Quantum annealing has recently been used to determine the Ramsey numbers R(m,2) for 3 < m < 9 and R(3,3) [Bian et al. (2013) PRL 111, 130505]. This was greatly celebrated as the largest experimental implementation of an adiabatic evolution algorithm to that date. However, in that computation, more than 66% of the qubits used were auxiliary qubits, so the sizes of the Ramsey number Hamiltonians used were tremendously smaller than the full 128-qubit capacity of the device used. The reason these auxiliary qubits were needed was because the best quantum annealing devices at the time (and still now) cannot implement multi-qubit interactions beyond 2-qubit interactions, and they are also limited in their capacity for 2-qubit interactions. We present a method which allows the full qubit capacity of a quantum annealing device to be used, by reducing multi-qubit and 2-qubit interactions. With our method, the device used in the 2013 Ramsey number quantum computation could have determined R(16,2) and R(4,3) with under 10 minutes of runtime.
Adiabatic quantum computing has recently been used to factor 56153 [Dattani & Bryans, arXiv:1411.6758] at room temperature, which is orders of magnitude larger than any number attempted yet using Shors algorithm (circuit-based quantum computation). H
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,ngeq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R(
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers $r(G,H
Ramsey theory is a highly active research area in mathematics that studies the emergence of order in large disordered structures. Ramsey numbers mark the threshold at which order first appears and are extremely difficult to calculate due to their exp
We introduce two methods for speeding up adiabatic quantum computations by increasing the energy between the ground and first excited states. Our methods are even more general. They can be used to shift a Hamiltonians density of states away from the