ﻻ يوجد ملخص باللغة العربية
We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from $^{16}$O to $A=339$. The calculations are based on the finite-range droplet macroscopic model and the folded-Yukawa single-particle microscopic model. Relative to our FRDM(1992) mass table in {sc Atomic Data and Nuclear Data Tables} [{bf 59} 185 (1995)], the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allows us to determine one additional macroscopic-model parameter, the density-symmetry coefficient $L$, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses. The values of ten constants are determined directly from an optimization to fit ground-state masses of 2149 nuclei ranging from $^{16}$O to $^{265}_{106}$Sg and $^{264}_{108}$Hs. The error of the mass model is 0.5595~MeV. We also provide masses in the FRLDM, which in the more accurate treatments now has an error of 0.6618 MeV. But in contrast to the FRDM, it is suitable for studies of fission and has been extensively so applied elsewhere, with FRLDM(2002) constants. The FRLDM(2012) fits 31 fission barrier heights from $^{70}$Se to $^{252}$Cf with a root-mean-square deviation of 1.052 MeV.
We show that the Liquid Drop Model is best suited to describe the masses of prolate deformed nuclei than of spherical nuclei. To this end three Liquid Drop Mass formulas are employed to describe nuclear masses of eight sets of nuclei with similar qua
We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-prese
Precision mass spectrometry of neutron-rich nuclei is of great relevance for astrophysics. Masses of exotic nuclides impose constraints on models for the nuclear interaction and thus affect the description of the equation of state of nuclear matter,
A new Skyrme-like energy density suitable for studies of strongly elongated nuclei has been determined in the framework of the Hartree-Fock-Bogoliubov theory using the recently developed model-based, derivative-free optimization algorithm POUNDerS. A
We introduce a new relativistic energy density functional constrained by the ground state properties of atomic nuclei along with the isoscalar giant monopole resonance energy and dipole polarizability in $^{208}$Pb. A unified framework of the relativ