ﻻ يوجد ملخص باللغة العربية
We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Delta masses and those of the dressed-quark and diquark correlations they contain.
We highlight Hermiticity issues in bound-state equations whose kernels are subject to a highly asymmetric mass and momentum distribution and whose eigenvalue spectrum becomes complex for radially excited states. We trace back the presence of imaginar
Amongst the bound states produced by the strong interaction, radially excited meson and nucleon states offer an important phenomenological window into the long-range behavior of the coupling constant in Quantum Chromodynamics. We here report on some
We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from $^{16}$O to $A=339$. The calculations are
We examine the results of Chiral Effective Field Theory ($chi$EFT) for the scalar- and spin-dipole polarisabilities of the proton and neutron, both for the physical pion mass and as a function of $m_pi$. This provides chiral extrapolations for lattic
An approach for relating the nucleon excited states extracted from lattice QCD and the nucleon resonances of experimental data has been developed using the Hamiltonian effective field theory (HEFT) method. By formulating HEFT in the finite volume of