ﻻ يوجد ملخص باللغة العربية
Estimating the engagement is critical for human - robot interaction. Engagement measures typically rely on the dynamics of the social signals exchanged by the partners, especially speech and gaze. However, the dynamics of these signals is likely to be influenced by individual and social factors, such as personality traits, as it is well documented that they critically influence how two humans interact with each other. Here, we assess the influence of two factors, namely extroversion and negative attitude toward robots, on speech and gaze during a cooperative task, where a human must physically manipulate a robot to assemble an object. We evaluate if the scores of extroversion and negative attitude towards robots co-variate with the duration and frequency of gaze and speech cues. The experiments were carried out with the humanoid robot iCub and N=56 adult participants. We found that the more people are extrovert, the more and longer they tend to talk with the robot; and the more people have a negative attitude towards robots, the less they will look at the robot face and the more they will look at the robot hands where the assembly and the contacts occur. Our results confirm and provide evidence that the engagement models classically used in human-robot interaction should take into account attitudes and personality traits.
This record contains the proceedings of the 2020 Workshop on Assessing, Explaining, and Conveying Robot Proficiency for Human-Robot Teaming, which was held in conjunction with the 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI
The high request for autonomous and flexible HRI implies the necessity of deploying Machine Learning (ML) mechanisms in the robot control. Indeed, the use of ML techniques, such as Reinforcement Learning (RL), makes the robot behaviour, during the le
This paper identifies stylistic differences in instruction-giving observed in a corpus of human-robot dialogue. Differences in verbosity and structure (i.e., single-intent vs. multi-intent instructions) arose naturally without restrictions or prior g
We describe a multi-phased Wizard-of-Oz approach to collecting human-robot dialogue in a collaborative search and navigation task. The data is being used to train an initial automated robot dialogue system to support collaborative exploration tasks.
Autonomous robots operating in large knowledgeintensive domains require planning in the discrete (task) space and the continuous (motion) space. In knowledge-intensive domains, on the one hand, robots have to reason at the highestlevel, for example t