ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural Generalizability: The Case of Similarity Search

271   0   0.0 ( 0 )
 نشر من قبل Yodsawalai Chodpathumwan
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph similarity search algorithms usually leverage the structural properties of a database. Hence, these algorithms are effective only on some structural variations of the data and are ineffective on other forms, which makes them hard to use. Ideally, one would like to design a data analytics algorithm that is structurally robust, i.e., it returns essentially the same accurate results over all possible structural variations of a dataset. We propose a novel approach to create a structurally robust similarity search algorithm over graph databases. We leverage the classic insight in the database literature that schematic variations are caused by having constraints in the database. We then present RelSim algorithm which is provably structurally robust under these variations. Our empirical studies show that our proposed algorithms are structurally robust while being efficient and as effective as or more effective than the state-of-the-art similarity search algorithms.



قيم البحث

اقرأ أيضاً

We study the similarity search problem which aims to find the similar query results according to a set of given data and a query string. To balance the result number and result quality, we combine query result diversity with query relaxation. Relaxat ion guarantees the number of the query results, returning more relevant elements to the query if the results are too few, while the diversity tries to reduce the similarity among the returned results. By making a trade-off of similarity and diversity, we improve the user experience. To achieve this goal, we define a novel goal function combining similarity and diversity. Aiming at this goal, we propose three algorithms. Among them, algorithms genGreedy and genCluster perform relaxation first and select part of the candidates to diversify. The third algorithm CB2S splits the dataset into smaller pieces using the clustering algorithm of k-means and processes queries in several small sets to retrieve more diverse results. The balance of similarity and diversity is determined through setting a threshold, which has a default value and can be adjusted according to users preference. The performance and efficiency of our system are demonstrated through extensive experiments based on various datasets.
We present SLASH (Sketched LocAlity Sensitive Hashing), an MPI (Message Passing Interface) based distributed system for approximate similarity search over terabyte scale datasets. SLASH provides a multi-node implementation of the popular LSH (localit y sensitive hashing) algorithm, which is generally implemented on a single machine. We show how we can append the LSH algorithm with heavy hitters sketches to provably solve the (high) similarity search problem without a single distance computation. Overall, we mathematically show that, under realistic data assumptions, we can identify the near-neighbor of a given query $q$ in sub-linear ($ ll O(n)$) number of simple sketch aggregation operations only. To make such a system practical, we offer a novel design and sketching solution to reduce the inter-machine communication overheads exponentially. In a direct comparison on comparable hardware, SLASH is more than 10000x faster than the popular LSH package in PySpark. PySpark is a widely-adopted distributed implementation of the LSH algorithm for large datasets and is deployed in commercial platforms. In the end, we show how our system scale to Tera-scale Criteo dataset with more than 4 billion samples. SLASH can index this 2.3 terabyte data over 20 nodes in under an hour, with query times in a fraction of milliseconds. To the best of our knowledge, there is no open-source system that can index and perform a similarity search on Criteo with a commodity cluster.
134 - Ye Yuan , Guoren Wang , Lei Chen 2012
Many studies have been conducted on seeking the efficient solution for subgraph similarity search over certain (deterministic) graphs due to its wide application in many fields, including bioinformatics, social network analysis, and Resource Descript ion Framework (RDF) data management. All these works assume that the underlying data are certain. However, in reality, graphs are often noisy and uncertain due to various factors, such as errors in data extraction, inconsistencies in data integration, and privacy preserving purposes. Therefore, in this paper, we study subgraph similarity search on large probabilistic graph databases. Different from previous works assuming that edges in an uncertain graph are independent of each other, we study the uncertain graphs where edges occurrences are correlated. We formally prove that subgraph similarity search over probabilistic graphs is #P-complete, thus, we employ a filter-and-verify framework to speed up the search. In the filtering phase,we develop tight lower and upper bounds of subgraph similarity probability based on a probabilistic matrix index, PMI. PMI is composed of discriminative subgraph features associated with tight lower and upper bounds of subgraph isomorphism probability. Based on PMI, we can sort out a large number of probabilistic graphs and maximize the pruning capability. During the verification phase, we develop an efficient sampling algorithm to validate the remaining candidates. The efficiency of our proposed solutions has been verified through extensive experiments.
Trajectory similarity computation is a fundamental component in a variety of real-world applications, such as ridesharing, road planning, and transportation optimization. Recent advances in mobile devices have enabled an unprecedented increase in the amount of available trajectory data such that efficient query processing can no longer be supported by a single machine. As a result, means of performing distributed in-memory trajectory similarity search are called for. However, existing distributed proposals suffer from either computing resource waste or are unable to support the range of similarity measures that are being used. We propose a distributed in-memory management framework called REPOSE for processing top-k trajectory similarity queries on Spark. We develop a reference point trie (RP-Trie) index to organize trajectory data for local search. In addition, we design a novel heterogeneous global partitioning strategy to eliminate load imbalance in distributed settings. We report on extensive experiments with real-world data that offer insight into the performance of the solution, and show that the solution is capable of outperforming the state-of-the-art proposals.
We introduce and study the problem of computing the similarity self-join in a streaming context (SSSJ), where the input is an unbounded stream of items arriving continuously. The goal is to find all pairs of items in the stream whose similarity is gr eater than a given threshold. The simplest formulation of the problem requires unbounded memory, and thus, it is intractable. To make the problem feasible, we introduce the notion of time-dependent similarity: the similarity of two items decreases with the difference in their arrival time. By leveraging the properties of this time-dependent similarity function, we design two algorithmic frameworks to solve the sssj problem. The first one, MiniBatch (MB), uses existing index-based filtering techniques for the static version of the problem, and combines them in a pipeline. The second framework, Streaming (STR), adds time filtering to the existing indexes, and integrates new time-based bounds deeply in the working of the algorithms. We also introduce a new indexing technique (L2), which is based on an existing state-of-the-art indexing technique (L2AP), but is optimized for the streaming case. Extensive experiments show that the STR algorithm, when instantiated with the L2 index, is the most scalable option across a wide array of datasets and parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا