ﻻ يوجد ملخص باللغة العربية
Trajectory similarity computation is a fundamental component in a variety of real-world applications, such as ridesharing, road planning, and transportation optimization. Recent advances in mobile devices have enabled an unprecedented increase in the amount of available trajectory data such that efficient query processing can no longer be supported by a single machine. As a result, means of performing distributed in-memory trajectory similarity search are called for. However, existing distributed proposals suffer from either computing resource waste or are unable to support the range of similarity measures that are being used. We propose a distributed in-memory management framework called REPOSE for processing top-k trajectory similarity queries on Spark. We develop a reference point trie (RP-Trie) index to organize trajectory data for local search. In addition, we design a novel heterogeneous global partitioning strategy to eliminate load imbalance in distributed settings. We report on extensive experiments with real-world data that offer insight into the performance of the solution, and show that the solution is capable of outperforming the state-of-the-art proposals.
We present SLASH (Sketched LocAlity Sensitive Hashing), an MPI (Message Passing Interface) based distributed system for approximate similarity search over terabyte scale datasets. SLASH provides a multi-node implementation of the popular LSH (localit
Betweenness centrality, measured by the number of times a vertex occurs on all shortest paths of a graph, has been recognized as a key indicator for the importance of a vertex in the network. However, the betweenness of a vertex is often very hard to
Graphs are fundamental data structures and have been employed for centuries to model real-world systems and phenomena. Random walk with restart (RWR) provides a good proximity score between two nodes in a graph, and it has been successfully used in m
Facility location queries identify the best locations to set up new facilities for providing service to its users. Majority of the existing works in this space assume that the user locations are static. Such limitations are too restrictive for planni
We study the problem of finding the $k$ most similar trajectories to a given query trajectory. Our work is inspired by the work of Grossi et al. [6] that considers trajectories as walks in a graph. Each visited vertex is accompanied by a time-interva