ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauss-Legendre Sampling on the Rotation Group

304   0   0.0 ( 0 )
 نشر من قبل Zubair Khalid
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a Gauss-Legendre quadrature based sampling on the rotation group for the representation of a band-limited signal such that the Fourier transform (FT) of a signal can be exactly computed from its samples. Our figure of merit is the sampling efficiency, which is defined as a ratio of the degrees of freedom required to represent a band-limited signal in harmonic domain to the number of samples required to accurately compute the FT. The proposed sampling scheme is asymptotically as efficient as the most efficient scheme developed very recently. For the computation of FT and inverse FT, we also develop fast algorithms of complexity similar to the complexity attained by the fast algorithms for the existing sampling schemes. The developed algorithms are stable, accurate and do not have any pre-computation requirements. We also analyse the computation time and numerical accuracy of the proposed algorithms and show, through numerical experiments, that the proposed Fourier transforms are accurate with errors on the order of numerical precision.



قيم البحث

اقرأ أيضاً

We develop a novel sampling theorem for functions defined on the three-dimensional rotation group SO(3) by connecting the rotation group to the three-torus through a periodic extension. Our sampling theorem requires $4L^3$ samples to capture all of t he information content of a signal band-limited at $L$, reducing the number of required samples by a factor of two compared to other equiangular sampling theorems. We present fast algorithms to compute the associated Fourier transform on the rotation group, the so-called Wigner transform, which scale as $O(L^4)$, compared to the naive scaling of $O(L^6)$. For the common case of a low directional band-limit $N$, complexity is reduced to $O(N L^3)$. Our fast algorithms will be of direct use in speeding up the computation of directional wavelet transforms on the sphere. We make our SO3 code implementing these algorithms publicly available.
In this study, we generalize a problem of sampling a scalar Gauss Markov Process, namely, the Ornstein-Uhlenbeck (OU) process, where the samples are sent to a remote estimator and the estimator makes a causal estimate of the observed realtime signal. In recent years, the problem is solved for stable OU processes. We present solutions for the optimal sampling policy that exhibits a smaller estimation error for both stable and unstable cases of the OU process along with a special case when the OU process turns to a Wiener process. The obtained optimal sampling policy is a threshold policy. However, the thresholds are different for all three cases. Later, we consider additional noise with the sample when the sampling decision is made beforehand. The estimator utilizes noisy samples to make an estimate of the current signal value. The mean-square error (mse) is changed from previous due to noise and the additional term in the mse is solved which provides performance upper bound and room for a pursuing further investigation on this problem to find an optimal sampling strategy that minimizes the estimation error when the observed samples are noisy. Numerical results show performance degradation caused by the additive noise.
For the accurate representation and reconstruction of band-limited signals on the sphere, an optimal-dimensionality sampling scheme has been recently proposed which requires the optimal number of samples equal to the number of degrees of freedom of t he signal in the spectral (harmonic) domain. The computation of the spherical harmonic transform (SHT) associated with the optimal-dimensionality sampling requires the inversion of a series of linear systems in an iterative manner. The stability of the inversion depends on the placement of iso-latitude rings of samples along co-latitude. In this work, we have developed a method to place these iso-latitude rings of samples with the objective of improving the well-conditioning of the linear systems involved in the computation of the SHT. We also propose a multi-pass SHT algorithm to iteratively improve the accuracy of the SHT of band-limited signals. Furthermore, we review the changes in the computational complexity and improvement in accuracy of the SHT with the embedding of the proposed methods. Through numerical experiments, we illustrate that the proposed variations and improvements in the SHT algorithm corresponding to the optimal-dimensionality sampling scheme significantly enhance the accuracy of the SHT.
A new scheme of sky pixelization is developed for CMB maps. The scheme is based on the Gauss--Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map. A corresponding code has been implemented and comparison with other methods has been done.
We consider an efficiently decodable non-adaptive group testing (NAGT) problem that meets theoretical bounds. The problem is to find a few specific items (at most $d$) satisfying certain characteristics in a colossal number of $N$ items as quickly as possible. Those $d$ specific items are called textit{defective items}. The idea of NAGT is to pool a group of items, which is called textit{a test}, then run a test on them. If the test outcome is textit{positive}, there exists at least one defective item in the test, and if it is textit{negative}, there exists no defective items. Formally, a binary $t times N$ measurement matrix $mathcal{M} = (m_{ij})$ is the representation for $t$ tests where row $i$ stands for test $i$ and $m_{ij} = 1$ if and only if item $j$ belongs to test $i$. There are three main objectives in NAGT: minimize the number of tests $t$, construct matrix $mathcal{M}$, and identify defective items as quickly as possible. In this paper, we present a strongly explicit construction of $mathcal{M}$ for when the number of defective items is at most 2, with the number of tests $t simeq 16 log{N} = O(log{N})$. In particular, we need only $K simeq N times 16log{N} = O(Nlog{N})$ bits to construct such matrices, which is optimal. Furthermore, given these $K$ bits, any entry in the matrix can be constructed in time $O left(ln{N}/ ln{ln{N}} right)$. Moreover, $mathcal{M}$ can be decoded with high probability in time $Oleft( frac{ln^2{N}}{ln^2{ln{N}}} right)$. When the number of defective items is greater than 2, we present a scheme that can identify at least $(1-epsilon)d$ defective items with $t simeq 32 C(epsilon) d log{N} = O(d log{N})$ in time $O left( d frac{ln^2{N}}{ln^2{ln{N}}} right)$ for any close-to-zero $epsilon$, where $C(epsilon)$ is a constant that depends only on $epsilon$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا