ﻻ يوجد ملخص باللغة العربية
The Frenet equation governs the extrinsic geometry of a string in three-dimensional ambient space in terms of the curvature and torsion, which are both scalar functions under string reparameterisations. The description engages a local SO(2) gauge symmetry, which emerges from the invariance of the extrinsic string geometry under local frame rotations around the tangent vector. Here we inquire how to construct the most general SO(2) gauge invariant Hamiltonian of strings, in terms of the curvature and torsion. The construction instructs us to introduce a long-range (self-) interaction between strings, which is mediated by a three dimensional bulk gauge field with a Chern-Simons self-interaction. The results support the proposal that fractional statistics should be prevalent in the case of three dimensional string-like configurations.
We determine the dimension of the moduli space of non-Abelian vortices in Yang-Mills-Chern-Simons-Higgs theory in 2+1 dimensions for gauge groups $G=U(1)times G$ with $G$ being an arbitrary semi-simple group. The calculation is carried out using a Ca
We consider the $U(1)$ Chern-Simons gauge theory defined in a general closed oriented 3-manifold $M$; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The nonperturbati
We study resurgence properties of partition function of SU(2) Chern-Simons theory (WRT invariant) on closed three-manifolds. We check explicitly that in various examples Borel transforms of asymptotic expansions posses expected analytic properties. I
We consider the matrix model of $U(N)$ refined Chern-Simons theory on $S^3$ for the unknot. We derive a $q$-difference operator whose insertion in the matrix integral reproduces an infinite set of Ward identities which we interpret as $q$-Virasoro co
By using the Hamilton-Jacobi [$HJ$] framework the higher-order Maxwell-Chern-Simons theory is analyzed. The complete set of $HJ$ Hamiltonians and a generalized $HJ$ differential are reported, from which all symmetries of the theory are identified. In