ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy And Mass Assembly (GAMA): Panchromatic Data Release (far-UV --- far-IR) and the low-z energy budget

70   0   0.0 ( 0 )
 نشر من قبل Simon P. Driver
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the GAMA Panchromatic Data Release (PDR) constituting over 230deg$^2$ of imaging with photometry in 21 bands extending from the far-UV to the far-IR. These data complement our spectroscopic campaign of over 300k galaxies, and are compiled from observations with a variety of facilities including: GALEX, SDSS, VISTA, WISE, and Herschel, with the GAMA regions currently being surveyed by VST and scheduled for observations by ASKAP. These data are processed to a common astrometric solution, from which photometry is derived for 221,373 galaxies with r<19.8 mag. Online tools are provided to access and download data cutouts, or the full mosaics of the GAMA regions in each band. We focus, in particular, on the reduction and analysis of the VISTA VIKING data, and compare to earlier datasets (i.e., 2MASS and UKIDSS) before combining the data and examining its integrity. Having derived the 21-band photometric catalogue we proceed to fit the data using the energy balance code MAGPHYS. These measurements are then used to obtain the first fully empirical measurement of the 0.1-500$mu$m energy output of the Universe. Exploring the Cosmic Spectral Energy Distribution (CSED) across three time-intervals (0.3-1.1Gyr, 1.1-1.8~Gyr and 1.8---2.4~Gyr), we find that the Universe is currently generating $(1.5 pm 0.3) times 10^{35}$ h$_{70}$ W Mpc$^{-3}$, down from $(2.5 pm 0.2) times 10^{35}$ h$_{70}$ W Mpc$^{-3}$ 2.3~Gyr ago. More importantly, we identify significant and smooth evolution in the integrated photon escape fraction at all wavelengths, with the UV escape fraction increasing from 27(18)% at z=0.18 in NUV(FUV) to 34(23)% at z=0.06. The GAMA PDR will allow for detailed studies of the energy production and outputs of individual systems, sub-populations, and representative galaxy samples at $z<0.5$. The GAMA PDR can be found at: http://gama-psi.icrar.org/



قيم البحث

اقرأ أيضاً

We describe data release 3 (DR3) of the Galaxy And Mass Assembly (GAMA) survey. The GAMA survey is a spectroscopic redshift and multi-wavelength photometric survey in three equatorial regions each of 60.0 deg^2 (G09, G12, G15), and two southern regio ns of 55.7 deg^2 (G02) and 50.6 deg^2 (G23). DR3 consists of: the first release of data covering the G02 region and of data on H-ATLAS sources in the equatorial regions; and updates to data on sources released in DR2. DR3 includes 154809 sources with secure redshifts across four regions. A subset of the G02 region is 95.5% redshift complete to r<19.8 over an area of 19.5 deg^2, with 20086 galaxy redshifts, that overlaps substantially with the XXL survey (X-ray) and VIPERS (redshift survey). In the equatorial regions, the main survey has even higher completeness (98.5%), and spectra for about 75% of H-ATLAS filler targets were also obtained. This filler sample extends spectroscopic redshifts, for probable optical counterparts to H-ATLAS sub-mm sources, to 0.8 mag deeper (r<20.6) than the GAMA main survey. There are 25814 galaxy redshifts for H-ATLAS sources from the GAMA main or filler surveys. GAMA DR3 is available at the survey website (www.gama-survey.org/dr3/).
We report an expanded sample of visual morphological classifications from the Galaxy and Mass Assembly (GAMA) survey phase two, which now includes 7,556 objects (previously 3,727 in phase one). We define a local (z <0.06) sample and classify galaxies into E, S0-Sa, SB0-SBa, Sab-Scd, SBab-SBcd, Sd-Irr, and little blue spheroid types. Using these updated classifications, we derive stellar mass function fits to individual galaxy populations divided both by morphological class and more general spheroid- or disk-dominated categories with a lower mass limit of log(Mstar/Msun) = 8 (one dex below earlier morphological mass function determinations). We find that all individual morphological classes and the combined spheroid-/bulge-dominated classes are well described by single Schechter stellar mass function forms. We find that the total stellar mass densities for individual galaxy populations and for the entire galaxy population are bounded within our stellar mass limits and derive an estimated total stellar mass density of rho_star = 2.5 x 10^8 Msun Mpc^-3 h_0.7, which corresponds to an approximately 4% fraction of baryons found in stars. The mass contributions to this total stellar mass density by galaxies that are dominated by spheroidal components (E and S0-Sa classes) and by disk components (Sab-Scd and Sd-Irr classes) are approximately 70% and 30%, respectively.
We build on a recent photometric decomposition analysis of 7506 Galaxy and Mass Assembly (GAMA) survey galaxies to derive stellar mass function fits to individual spheroid and disk component populations down to a lower mass limit of log(M_*/M_sun)= 8 . We find that the spheroid/disk mass distributions for individual galaxy morphological types are well described by single Schechter function forms. We derive estimates of the total stellar mass densities in spheroids (rho_spheroid = 1.24+/-0.49 * 10^8 M_sun Mpc^-3 h_0.7) and disks (rho_disk = 1.20+/-0.45 * 10^8 M_sun Mpc^-3 h_0.7), which translates to approximately 50% of the local stellar mass density in spheroids and 48% in disks. The remaining stellar mass is found in the dwarf little blue spheroid class, which is not obviously similar in structure to either classical spheroid or disk populations. We also examine the variation of component mass ratios across galaxy mass and group halo mass regimes, finding the transition from spheroid to disk mass dominance occurs near galaxy stellar mass ~10^11 M_sun and group halo mass ~10^12.5 M_sun/h. We further quantify the variation in spheroid-to-total mass ratio with group halo mass for central and satellite populations as well as the radial variation of this ratio within groups.
148 - Simon P. Driver 2015
The GAMA survey has now completed its spectroscopic campaign of over 250,000 galaxies ($r<19.8$mag), and will shortly complete the assimilation of the complementary panchromatic imaging data from GALEX, VST, VISTA, WISE, and Herschel. In the coming y ears the GAMA fields will be observed by the Australian Square Kilometer Array Pathfinder allowing a complete study of the stellar, dust, and gas mass constituents of galaxies within the low-z Universe ($z<0.3$). The science directive is to study the distribution of mass, energy, and structure on kpc-Mpc scales over a 3billion year timeline. This is being pursued both as an empirical study in its own right, as well as providing a benchmark resource against which the outputs from numerical simulations can be compared. GAMA has three particularly compelling aspects which set it apart: completeness, selection, and panchromatic coverage. The very high redshift completeness ($sim 98$%) allows for extremely complete and robust pair and group catalogues; the simple selection ($r<19.8$mag) minimises the selection bias and simplifies its management; and the panchromatic coverage, 0.2$mu$m - 1m, enables studies of the complete energy distributions for individual galaxies, well defined sub-samples, and population assembles (either directly or via stacking techniques). For further details and data releases see: http://www.gama-survey.org/
138 - D. J. Farrow 2015
We measure the projected 2-point correlation function of galaxies in the 180 deg$^2$ equatorial regions of the GAMA II survey, for four different redshift slices between z = 0.0 and z=0.5. To do this we further develop the Cole (2011) method of produ cing suitable random catalogues for the calculation of correlation functions. We find that more r-band luminous, more massive and redder galaxies are more clustered. We also find that red galaxies have stronger clustering on scales less than ~3 $h^{-1}$ Mpc. We compare to two differe
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا