ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy And Mass Assembly (GAMA): A study of energy, mass, and structure (1kpc-1Mpc) at z < 0.3

141   0   0.0 ( 0 )
 نشر من قبل Simon P. Driver
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Simon P. Driver




اسأل ChatGPT حول البحث

The GAMA survey has now completed its spectroscopic campaign of over 250,000 galaxies ($r<19.8$mag), and will shortly complete the assimilation of the complementary panchromatic imaging data from GALEX, VST, VISTA, WISE, and Herschel. In the coming years the GAMA fields will be observed by the Australian Square Kilometer Array Pathfinder allowing a complete study of the stellar, dust, and gas mass constituents of galaxies within the low-z Universe ($z<0.3$). The science directive is to study the distribution of mass, energy, and structure on kpc-Mpc scales over a 3billion year timeline. This is being pursued both as an empirical study in its own right, as well as providing a benchmark resource against which the outputs from numerical simulations can be compared. GAMA has three particularly compelling aspects which set it apart: completeness, selection, and panchromatic coverage. The very high redshift completeness ($sim 98$%) allows for extremely complete and robust pair and group catalogues; the simple selection ($r<19.8$mag) minimises the selection bias and simplifies its management; and the panchromatic coverage, 0.2$mu$m - 1m, enables studies of the complete energy distributions for individual galaxies, well defined sub-samples, and population assembles (either directly or via stacking techniques). For further details and data releases see: http://www.gama-survey.org/



قيم البحث

اقرأ أيضاً

138 - D. J. Farrow 2015
We measure the projected 2-point correlation function of galaxies in the 180 deg$^2$ equatorial regions of the GAMA II survey, for four different redshift slices between z = 0.0 and z=0.5. To do this we further develop the Cole (2011) method of produ cing suitable random catalogues for the calculation of correlation functions. We find that more r-band luminous, more massive and redder galaxies are more clustered. We also find that red galaxies have stronger clustering on scales less than ~3 $h^{-1}$ Mpc. We compare to two differe
We explore the clustering of galaxy groups in the Galaxy and Mass Assembly (GAMA) survey to investigate the dependence of group bias and profile on separation scale and group mass. Due to the inherent uncertainty in estimating the group selection fun ction, and hence the group auto-correlation function, we instead measure the projected galaxy--group cross-correlation function. We find that the group profile has a strong dependence on scale and group mass on scales $r_bot lesssim 1 h^{-1} mathrm{Mpc}$. We also find evidence that the most massive groups live in extended, overdense, structures. In the first application of marked clustering statistics to groups, we find that group-mass marked clustering peaks on scales comparable to the typical group radius of $r_bot approx 0.5 h^{-1} mathrm{Mpc}$. While massive galaxies are associated with massive groups, the marked statistics show no indication of galaxy mass segregation within groups. We show similar results from the IllustrisTNG simulations and the L-Galaxies model, although L-Galaxies shows an enhanced bias and galaxy mass dependence on small scales.
Massive Ultracompact Galaxies (MUGs) are common at z=2-3, but very rare in the nearby Universe. Simulations predict that the few surviving MUGs should reside in galaxy clusters, whose large relative velocities prevent them from merging, thus maintain ing their original properties (namely stellar populations, masses, sizes and dynamical state). We take advantage of the high-completeness, large-area spectroscopic GAMA survey, complementing it with deeper imaging from the KiDS and VIKING surveys. We find a set of 22 bona-fide MUGs, defined as having high stellar mass (>8x10^10 M_Sun) and compact size (R_e<2 Kpc) at 0.02 < z < 0.3. An additional set of 7 lower-mass objects (6x10^10 < M_star/M_Sun < 8x10^10) are also potential candidates according to typical mass uncertainties. The comoving number density of MUGs at low redshift (z < 0.3) is constrained at $(1.0pm 0.4)x 10^-6 Mpc^-3, consistent with galaxy evolution models. However, we find a mixed distribution of old and young galaxies, with a quarter of the sample representing (old) relics. MUGs have a predominantly early/swollen disk morphology (Sersic index 1<n<2.5) with high stellar surface densities (<Sigma_e> ~ 10^10 M_Sun Kpc^-2). Interestingly, a large fraction feature close companions -- at least in projection -- suggesting that many (but not all) reside in the central regions of groups. Halo masses show these galaxies inhabit average-mass groups. As MUGs are found to be almost equally distributed among environments of different masses, their relative fraction is higher in more massive overdensities, matching the expectations that some of these galaxies fell in these regions at early times. However, there must be another channel leading some of these galaxies to an abnormally low merger history because our sample shows a number of objects that do not inhabit particularly dense environments. (abridged)
We present the GAMA Panchromatic Data Release (PDR) constituting over 230deg$^2$ of imaging with photometry in 21 bands extending from the far-UV to the far-IR. These data complement our spectroscopic campaign of over 300k galaxies, and are compiled from observations with a variety of facilities including: GALEX, SDSS, VISTA, WISE, and Herschel, with the GAMA regions currently being surveyed by VST and scheduled for observations by ASKAP. These data are processed to a common astrometric solution, from which photometry is derived for 221,373 galaxies with r<19.8 mag. Online tools are provided to access and download data cutouts, or the full mosaics of the GAMA regions in each band. We focus, in particular, on the reduction and analysis of the VISTA VIKING data, and compare to earlier datasets (i.e., 2MASS and UKIDSS) before combining the data and examining its integrity. Having derived the 21-band photometric catalogue we proceed to fit the data using the energy balance code MAGPHYS. These measurements are then used to obtain the first fully empirical measurement of the 0.1-500$mu$m energy output of the Universe. Exploring the Cosmic Spectral Energy Distribution (CSED) across three time-intervals (0.3-1.1Gyr, 1.1-1.8~Gyr and 1.8---2.4~Gyr), we find that the Universe is currently generating $(1.5 pm 0.3) times 10^{35}$ h$_{70}$ W Mpc$^{-3}$, down from $(2.5 pm 0.2) times 10^{35}$ h$_{70}$ W Mpc$^{-3}$ 2.3~Gyr ago. More importantly, we identify significant and smooth evolution in the integrated photon escape fraction at all wavelengths, with the UV escape fraction increasing from 27(18)% at z=0.18 in NUV(FUV) to 34(23)% at z=0.06. The GAMA PDR will allow for detailed studies of the energy production and outputs of individual systems, sub-populations, and representative galaxy samples at $z<0.5$. The GAMA PDR can be found at: http://gama-psi.icrar.org/
We use a highly complete subset of the GAMA-II redshift sample to fully describe the stellar mass dependence of close-pairs and mergers between 10^8 Msun and 10^12 Msun. Using the analytic form of this fit we investigate the total stellar mass accret ing onto more massive galaxies across all mass ratios. Depending on how conservatively we select our robust merging systems, the fraction of mass merging onto more massive companions is 2.0%-5.6%. Using the GAMA-II data we see no significant evidence for a change in the close-pair fraction between redshift $z = 0.05-0.2$. However, we find a systematically higher fraction of galaxies in similar mass close-pairs compared to published results over a similar redshift baseline. Using a compendium of data and the function $gamma_M =A(1+z)m$ to predict the major close-pair fraction, we find fitting parameters of $A = 0.021 pm 0.001$ and $m = 1.53 pm 0.08$, which represents a higher low-redshift normalisation and shallower power-law slope than recent literature values. We find that the relative importance of in-situ star-formation versus galaxy merging is inversely correlated, with star-formation dominating the addition of stellar material below Mstar and merger accretion events dominating beyond Mstar. We find mergers have a measurable impact on the whole extent of the GSMF, manifest as a deepening of the dip in the GSMF over the next Gyr and an increase in Mstar by as much as 0.01-0.05 dex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا