ﻻ يوجد ملخص باللغة العربية
In this paper, we made a survey on Word Sense Disambiguation (WSD). Near about in all major languages around the world, research in WSD has been conducted upto different extents. In this paper, we have gone through a survey regarding the different approaches adopted in different research works, the State of the Art in the performance in this domain, recent works in different Indian languages and finally a survey in Bengali language. We have made a survey on different competitions in this field and the bench mark results, obtained from those competitions.
Word sense disambiguation (WSD) methods identify the most suitable meaning of a word with respect to the usage of that word in a specific context. Neural network-based WSD approaches rely on a sense-annotated corpus since they do not utilize lexical
Word Sense Disambiguation (WSD) aims to identify the correct meaning of polysemous words in the particular context. Lexical resources like WordNet which are proved to be of great help for WSD in the knowledge-based methods. However, previous neural n
In this paper, we applied a novel learning algorithm, namely, Deep Belief Networks (DBN) to word sense disambiguation (WSD). DBN is a probabilistic generative model composed of multiple layers of hidden units. DBN uses Restricted Boltzmann Machine (R
Interpretability of a predictive model is a powerful feature that gains the trust of users in the correctness of the predictions. In word sense disambiguation (WSD), knowledge-based systems tend to be much more interpretable than knowledge-free count
We present two supervised (pre-)training methods to incorporate gloss definitions from lexical resources into neural language models (LMs). The training improves our models performance for Word Sense Disambiguation (WSD) but also benefits general lan