ﻻ يوجد ملخص باللغة العربية
In this paper, we applied a novel learning algorithm, namely, Deep Belief Networks (DBN) to word sense disambiguation (WSD). DBN is a probabilistic generative model composed of multiple layers of hidden units. DBN uses Restricted Boltzmann Machine (RBM) to greedily train layer by layer as a pretraining. Then, a separate fine tuning step is employed to improve the discriminative power. We compared DBN with various state-of-the-art supervised learning algorithms in WSD such as Support Vector Machine (SVM), Maximum Entropy model (MaxEnt), Naive Bayes classifier (NB) and Kernel Principal Component Analysis (KPCA). We used all words in the given paragraph, surrounding context words and part-of-speech of surrounding words as our knowledge sources. We conducted our experiment on the SENSEVAL-2 data set. We observed that DBN outperformed all other learning algorithms.
Word sense disambiguation (WSD) methods identify the most suitable meaning of a word with respect to the usage of that word in a specific context. Neural network-based WSD approaches rely on a sense-annotated corpus since they do not utilize lexical
In this paper, we made a survey on Word Sense Disambiguation (WSD). Near about in all major languages around the world, research in WSD has been conducted upto different extents. In this paper, we have gone through a survey regarding the different ap
Word Sense Disambiguation (WSD) aims to identify the correct meaning of polysemous words in the particular context. Lexical resources like WordNet which are proved to be of great help for WSD in the knowledge-based methods. However, previous neural n
In this paper, we are going to focus on speed up of the Word Sense Disambiguation procedure by filtering the relevant senses of an ambiguous word through Part-of-Speech Tagging. First, this proposed approach performs the Part-of-Speech Tagging operat
Interpretability of a predictive model is a powerful feature that gains the trust of users in the correctness of the predictions. In word sense disambiguation (WSD), knowledge-based systems tend to be much more interpretable than knowledge-free count