ترغب بنشر مسار تعليمي؟ اضغط هنا

A Framework of Sparse Online Learning and Its Applications

189   0   0.0 ( 0 )
 نشر من قبل Dayong Wang
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The amount of data in our society has been exploding in the era of big data today. In this paper, we address several open challenges of big data stream classification, including high volume, high velocity, high dimensionality, high sparsity, and high class-imbalance. Many existing studies in data mining literature solve data stream classification tasks in a batch learning setting, which suffers from poor efficiency and scalability when dealing with big data. To overcome the limitations, this paper investigates an online learning framework for big data stream classification tasks. Unlike some existing online data stream classification techniques that are often based on first-order online learning, we propose a framework of Sparse Online Classification (SOC) for data stream classification, which includes some state-of-the-art first-order sparse online learning algorithms as special cases and allows us to derive a new effective second-order online learning algorithm for data stream classification. In addition, we also propose a new cost-sensitive sparse online learning algorithm by extending the framework with application to tackle online anomaly detection tasks where class distribution of data could be very imbalanced. We also analyze the theoretical bounds of the proposed method, and finally conduct an extensive set of experiments, in which encouraging results validate the efficacy of the proposed algorithms in comparison to a family of state-of-the-art techniques on a variety of data stream classification tasks.



قيم البحث

اقرأ أيضاً

We investigate the hardness of online reinforcement learning in fixed horizon, sparse linear Markov decision process (MDP), with a special focus on the high-dimensional regime where the ambient dimension is larger than the number of episodes. Our con tribution is two-fold. First, we provide a lower bound showing that linear regret is generally unavoidable in this case, even if there exists a policy that collects well-conditioned data. The lower bound construction uses an MDP with a fixed number of states while the number of actions scales with the ambient dimension. Note that when the horizon is fixed to one, the case of linear stochastic bandits, the linear regret can be avoided. Second, we show that if the learner has oracle access to a policy that collects well-conditioned data then a variant of Lasso fitted Q-iteration enjoys a nearly dimension-free regret of $tilde{O}( s^{2/3} N^{2/3})$ where $N$ is the number of episodes and $s$ is the sparsity level. This shows that in the large-action setting, the difficulty of learning can be attributed to the difficulty of finding a good exploratory policy.
For many data mining and machine learning tasks, the quality of a similarity measure is the key for their performance. To automatically find a good similarity measure from datasets, metric learning and similarity learning are proposed and studied ext ensively. Metric learning will learn a Mahalanobis distance based on positive semi-definite (PSD) matrix, to measure the distances between objectives, while similarity learning aims to directly learn a similarity function without PSD constraint so that it is more attractive. Most of the existing similarity learning algorithms are online similarity learning method, since online learning is more scalable than offline learning. However, most existing online similarity learning algorithms learn a full matrix with d 2 parameters, where d is the dimension of the instances. This is clearly inefficient for high dimensional tasks due to its high memory and computational complexity. To solve this issue, we introduce several Sparse Online Relative Similarity (SORS) learning algorithms, which learn a sparse model during the learning process, so that the memory and computational cost can be significantly reduced. We theoretically analyze the proposed algorithms, and evaluate them on some real-world high dimensional datasets. Encouraging empirical results demonstrate the advantages of our approach in terms of efficiency and efficacy.
Interactive user interfaces need to continuously evolve based on the interactions that a user has (or does not have) with the system. This may require constant exploration of various options that the system may have for the user and obtaining signals of user preferences on those. However, such an exploration, especially when the set of available options itself can change frequently, can lead to sub-optimal user experiences. We present Explore-Exploit: a framework designed to collect and utilize user feedback in an interactive and online setting that minimizes regressions in end-user experience. This framework provides a suite of online learning operators for various tasks such as personalization ranking, candidate selection and active learning. We demonstrate how to integrate this framework with run-time services to leverage online and interactive machine learning out-of-the-box. We also present results demonstrating the efficiencies that can be achieved using the Explore-Exploit framework.
Inverse reinforcement learning (IRL) is the problem of learning the preferences of an agent from the observations of its behavior on a task. While this problem has been well investigated, the related problem of {em online} IRL---where the observation s are incrementally accrued, yet the demands of the application often prohibit a full rerun of an IRL method---has received relatively less attention. We introduce the first formal framework for online IRL, called incremental IRL (I2RL), and a new method that advances maximum entropy IRL with hidden variables, to this setting. Our formal analysis shows that the new method has a monotonically improving performance with more demonstration data, as well as probabilistically bounded error, both under full and partial observability. Experiments in a simulated robotic application of penetrating a continuous patrol under occlusion shows the relatively improved performance and speed up of the new method and validates the utility of online IRL.
105 - Sirisha Rambhatla , Xingguo Li , 2019
We consider the dictionary learning problem, where the aim is to model the given data as a linear combination of a few columns of a matrix known as a dictionary, where the sparse weights forming the linear combination are known as coefficients. Since the dictionary and coefficients, parameterizing the linear model are unknown, the corresponding optimization is inherently non-convex. This was a major challenge until recently, when provable algorithms for dictionary learning were proposed. Yet, these provide guarantees only on the recovery of the dictionary, without explicit recovery guarantees on the coefficients. Moreover, any estimation error in the dictionary adversely impacts the ability to successfully localize and estimate the coefficients. This potentially limits the utility of existing provable dictionary learning methods in applications where coefficient recovery is of interest. To this end, we develop NOODL: a simple Neurally plausible alternating Optimization-based Online Dictionary Learning algorithm, which recovers both the dictionary and coefficients exactly at a geometric rate, when initialized appropriately. Our algorithm, NOODL, is also scalable and amenable for large scale distributed implementations in neural architectures, by which we mean that it only involves simple linear and non-linear operations. Finally, we corroborate these theoretical results via experimental evaluation of the proposed algorithm with the current state-of-the-art techniques. Keywords: dictionary learning, provable dictionary learning, online dictionary learning, non-convex, sparse coding, support recovery, iterative hard thresholding, matrix factorization, neural architectures, neural networks, noodl, sparse representations, sparse signal processing.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا