ترغب بنشر مسار تعليمي؟ اضغط هنا

Explore-Exploit: A Framework for Interactive and Online Learning

99   0   0.0 ( 0 )
 نشر من قبل Honglei Liu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Interactive user interfaces need to continuously evolve based on the interactions that a user has (or does not have) with the system. This may require constant exploration of various options that the system may have for the user and obtaining signals of user preferences on those. However, such an exploration, especially when the set of available options itself can change frequently, can lead to sub-optimal user experiences. We present Explore-Exploit: a framework designed to collect and utilize user feedback in an interactive and online setting that minimizes regressions in end-user experience. This framework provides a suite of online learning operators for various tasks such as personalization ranking, candidate selection and active learning. We demonstrate how to integrate this framework with run-time services to leverage online and interactive machine learning out-of-the-box. We also present results demonstrating the efficiencies that can be achieved using the Explore-Exploit framework.



قيم البحث

اقرأ أيضاً

Inverse reinforcement learning (IRL) is the problem of learning the preferences of an agent from the observations of its behavior on a task. While this problem has been well investigated, the related problem of {em online} IRL---where the observation s are incrementally accrued, yet the demands of the application often prohibit a full rerun of an IRL method---has received relatively less attention. We introduce the first formal framework for online IRL, called incremental IRL (I2RL), and a new method that advances maximum entropy IRL with hidden variables, to this setting. Our formal analysis shows that the new method has a monotonically improving performance with more demonstration data, as well as probabilistically bounded error, both under full and partial observability. Experiments in a simulated robotic application of penetrating a continuous patrol under occlusion shows the relatively improved performance and speed up of the new method and validates the utility of online IRL.
In real-world machine learning applications, there is a cost associated with sampling of different features. Budgeted learning can be used to select which feature-values to acquire from each instance in a dataset, such that the best model is induced under a given constraint. However, this approach is not possible in the domain of online learning since one may not retroactively acquire feature-values from past instances. In online learning, the challenge is to find the optimum set of features to be acquired from each instance upon arrival from a data stream. In this paper we introduce the issue of online budgeted learning and describe a general framework for addressing this challenge. We propose two types of feature value acquisition policies based on the multi-armed bandit problem: random and adaptive. Adaptive policies perform online adjustments according to new information coming from a data stream, while random policies are not sensitive to the information that arrives from the data stream. Our comparative study on five real-world datasets indicates that adaptive policies outperform random policies for most budget limitations and datasets. Furthermore, we found that in some cases adaptive policies achieve near-optimal results.
In this paper, we present a new class of Markov decision processes (MDPs), called Tsallis MDPs, with Tsallis entropy maximization, which generalizes existing maximum entropy reinforcement learning (RL). A Tsallis MDP provides a unified framework for the original RL problem and RL with various types of entropy, including the well-known standard Shannon-Gibbs (SG) entropy, using an additional real-valued parameter, called an entropic index. By controlling the entropic index, we can generate various types of entropy, including the SG entropy, and a different entropy results in a different class of the optimal policy in Tsallis MDPs. We also provide a full mathematical analysis of Tsallis MDPs, including the optimality condition, performance error bounds, and convergence. Our theoretical result enables us to use any positive entropic index in RL. To handle complex and large-scale problems, we propose a model-free actor-critic RL method using Tsallis entropy maximization. We evaluate the regularization effect of the Tsallis entropy with various values of entropic indices and show that the entropic index controls the exploration tendency of the proposed method. For a different type of RL problems, we find that a different value of the entropic index is desirable. The proposed method is evaluated using the MuJoCo simulator and achieves the state-of-the-art performance.
A grand challenge in reinforcement learning is intelligent exploration, especially when rewards are sparse or deceptive. Two Atari games serve as benchmarks for such hard-exploration domains: Montezumas Revenge and Pitfall. On both games, current RL algorithms perform poorly, even those with intrinsic motivation, which is the dominant method to improve performance on hard-exploration domains. To address this shortfall, we introduce a new algorithm called Go-Explore. It exploits the following principles: (1) remember previously visited states, (2) first return to a promising state (without exploration), then explore from it, and (3) solve simulated environments through any available means (including by introducing determinism), then robustify via imitation learning. The combined effect of these principles is a dramatic performance improvement on hard-exploration problems. On Montezumas Revenge, Go-Explore scores a mean of over 43k points, almost 4 times the previous state of the art. Go-Explore can also harness human-provided domain knowledge and, when augmented with it, scores a mean of over 650k points on Montezumas Revenge. Its max performance of nearly 18 million surpasses the human world record, meeting even the strictest definition of superhuman performance. On Pitfall, Go-Explore with domain knowledge is the first algorithm to score above zero. Its mean score of almost 60k points exceeds expert human performance. Because Go-Explore produces high-performing demonstrations automatically and cheaply, it also outperforms imitation learning work where humans provide solution demonstrations. Go-Explore opens up many new research directions into improving it and weaving its insights into current RL algorithms. It may also enable progress on previously unsolvable hard-exploration problems in many domains, especially those that harness a simulator during training (e.g. robotics).
117 - Yang Liu , Yan Kang , Xinwei Zhang 2019
We introduce a collaborative learning framework allowing multiple parties having different sets of attributes about the same user to jointly build models without exposing their raw data or model parameters. In particular, we propose a Federated Stoch astic Block Coordinate Descent (FedBCD) algorithm, in which each party conducts multiple local updates before each communication to effectively reduce the number of communication rounds among parties, a principal bottleneck for collaborative learning problems. We analyze theoretically the impact of the number of local updates and show that when the batch size, sample size, and the local iterations are selected appropriately, within $T$ iterations, the algorithm performs $mathcal{O}(sqrt{T})$ communication rounds and achieves some $mathcal{O}(1/sqrt{T})$ accuracy (measured by the average of the gradient norm squared). The approach is supported by our empirical evaluations on a variety of tasks and datasets, demonstrating advantages over stochastic gradient descent (SGD) approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا