ﻻ يوجد ملخص باللغة العربية
Invariant Set (IS) theory is a locally causal ontic theory of physics based on the Cosmological Invariant Set postulate that the universe $U$ can be considered a deterministic dynamical system evolving precisely on a (suitably constructed) fractal dynamically invariant set in $U$s state space. IS theory violates the Bell inequalities by violating Measurement Independence. Despite this, IS theory is not fine tuned, is not conspiratorial, does not constrain experimenter free will and does not invoke retrocausality. The reasons behind these claims are discussed in this paper. These arise from properties not found in conventional ontic models: the invariant set has zero measure in its Euclidean embedding space, has Cantor Set structure homeomorphic to the p-adic integers ($p ggg 0$) and is non-computable. In particular, it is shown that the p-adic metric encapulates the physics of the Cosmological Invariant Set postulate, and provides the technical means to demonstrate no fine tuning or conspiracy. Quantum theory can be viewed as the singular limit of IS theory when when $p$ is set equal to infinity. Since it is based around a top-down constraint from cosmology, IS theory suggests that gravitational and quantum physics will be unified by a gravitational theory of the quantum, rather than a quantum theory of gravity. Some implications arising from such a perspective are discussed.
Invariant Set Theory (IST) is a realistic, locally causal theory of fundamental physics which assumes a much stronger synergy between cosmology and quantum physics than exists in contemporary theory. In IST the (quasi-cyclic) universe $U$ is treated
Bells theorem is often said to imply that quantum mechanics violates local causality, and that local causality cannot be restored with a hidden-variables theory. This however is only correct if the hidden-variables theory fulfils an assumption called
We identify points of difference between Invariant Set Theory and standard quantum theory, and evaluate if these would lead to noticeable differences in predictions between the two theories. From this evaluation, we design a number of experiments, wh
We address the fine-tuning problem of dark energy cosmologies which arises when the dark energy density needs to initially lie in a narrow range in order for its present value to be consistent with observations. As recently noticed, this problem beco
In arXiv:1707.08641, Tim Maudlin claims to construct a counterexample to the result of Proc. Roy. Soc. A vol. 473, iss. 2202, 2017 (arXiv:1607.07871), in which it was shown that no realist model satisfying a certain notion of time-symmetry (in additi