ﻻ يوجد ملخص باللغة العربية
Here we report on the first successful exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy (SOFIA). We observed a single transit of the hot Jupiter HD 189733 b, obtaining two simultaneous primary transit lightcurves in the B and z bands as a demonstration of SOFIAs capability to perform absolute transit photometry. We present a detailed description of our data reduction, in particular the correlation of photometric systematics with various in-flight parameters unique to the airborne observing environment. The derived transit depths at B and z wavelengths confirm a previously reported slope in the optical transmission spectrum of HD 189733 b. Our results give new insights to the current discussion about the source of this Rayleigh scattering in the upper atmosphere and the question of fixed limb darkening coefficients in fitting routines.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7-m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths fro
HD 95086 is an intermediate-mass debris-disk-bearing star. VLT/NaCo $3.8 mu m$ observations revealed it hosts a $5pm2 mathrm{M}_{Jup}$ companion (HD 95086 b) at $simeq 56$ AU. Follow-up observations at 1.66 and 2.18 $mu m$ yielded a null detection, s
An updated Science Vision for the SOFIA project is presented, including an overview of the characteristics and capabilities of the observatory and first generation instruments. A primary focus is placed on four science themes: The Formation of Stars
Multi-wavelength imaging polarimetry at far-infrared wavelengths has proven to be an excellent tool for studying the physical properties of dust, molecular clouds, and magnetic fields in the interstellar medium. Although these wavelengths are only ob
Giant exoplanets orbiting very close to their parent star (hot Jupiters) are subject to tidal forces expected to synchronize their rotational and orbital periods on short timescales (tidal locking). However, spin rotation has never been measured dire