ﻻ يوجد ملخص باللغة العربية
Pauli spin blockade (PSB) is a significant physical effect in double quantum dot (DQD) systems. In this paper, we start from the fundamental quantum model of the DQD with the electron-electron interaction being considered, and then systematically study the PSB effect in DQD by using a recently developed non-perturbative method, the hierarchical equations of motion (HEOM) approach. The physical picture of the PSB is elucidated explicitly and the gate voltage manipulation is described minutely, which are both qualitatively consistent with the experimental measurements. When dotdot exchange interaction is involved, the PSB effect may be lifted by the strong antiferromagnetic exchange coupling.
We present measurements on gate-defined double quantum dots in Ge-Si core-shell nanowires, which we tune to a regime with visible shell filling in both dots. We observe a Pauli spin blockade and can assign the measured leakage current at low magnetic
By means of time-resolved optical orientation under strong optical pumping, the k-dependence of the electron spin-flip time (t_sf) in undoped GaAs is experimentally determined. t_sf monotonically decreases by more than one order of magnitude when the
We report Pauli spin blockade in an impurity defined carbon nanotube double quantum dot. We observe a pronounced current suppression for negative source-drain bias voltages which is investigated for both symmetric and asymmetric coupling of the quant
Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport expe
We investigate the influence of thermal energy on the current flow and electron spin states in double quantum dots in series. The quadruplet Pauli spin blockade, which is caused by the quadruplet and doublet states, occurs at low temperatures affecti