ترغب بنشر مسار تعليمي؟ اضغط هنا

Pauli spin blockade in CMOS double quantum dot devices

120   0   0.0 ( 0 )
 نشر من قبل Dharmraj Kotekar Patil
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport experiments in double gate nanowire transistors issued from a CMOS process on 300 mm silicon-on-insulator wafers. At low temperature the devices behave as two few-electron quantum dots in series. We observe signatures of Pauli spin blockade with a singlet-triplet splitting ranging from 0.3 to 1.3 meV. Magneto-transport measurements show that transitions which conserve spin are shown to be magnetic-field independent up to B = 6 T.



قيم البحث

اقرأ أيضاً

We measure transport at finite bias through a double quantum dot formed by top-gates in an InAs nanowire. Pauli spin-bockade is confirmed with several electrons in the dot. This is expected due to the small exchange interactions in InAs and the large singlet-triplet splitting, which can be measured and tuned by a gate voltage.
145 - H. W. Liu , T. Fujisawa , Y. Ono 2008
We present measurements of resonant tunneling through discrete energy levels of a silicon double quantum dot formed in a thin silicon-on-insulator layer. In the absence of piezoelectric phonon coupling, spontaneous phonon emission with deformation-po tential coupling accounts for inelastic tunneling through the ground states of the two dots. Such transport measurements enable us to observe a Pauli spin blockade due to effective two-electron spin-triplet correlations, evident in a distinct bias-polarity dependence of resonant tunneling through the ground states. The blockade is lifted by the excited-state resonance by virtue of efficient phonon emission between the ground states. Our experiment demonstrates considerable potential for investigating silicon-based spin dynamics and spin-based quantum information processing.
We report Pauli spin blockade in an impurity defined carbon nanotube double quantum dot. We observe a pronounced current suppression for negative source-drain bias voltages which is investigated for both symmetric and asymmetric coupling of the quant um dots to the leads. The measured differential conductance agrees well with a theoretical model of a double quantum dot system in the spin-blockade regime which allows us to estimate the occupation probabilities of the relevant singlet and triplet states. This work shows that effective spin-to-charge conversion in nanotube quantum dots is feasible and opens the possibility of single-spin readout in a material that is not limited by hyperfine interaction with nuclear spins.
95 - M. Kondo , S. Miyota , W. Izumida 2021
We investigate the influence of thermal energy on the current flow and electron spin states in double quantum dots in series. The quadruplet Pauli spin blockade, which is caused by the quadruplet and doublet states, occurs at low temperatures affecti ng the transport properties. As the temperature increases, the quadruplet Pauli spin blockade occurs as a result of the thermal energy, even in regions where it does not occur at low temperatures. This is because the triplet state is formed in one dot as a result of the gradual change of the Fermi distribution function of the electrodes with increasing temperature. Moreover, the thermally assisted Pauli spin blockade results in coexistence of the Coulomb and Pauli spin blockades. Conversely, for the standard triplet Pauli spin blockade, which occurs as a result of the triplet and singlet states, the current through the double dots monotonously smears out as the temperature increases. Therefore, the thermally assisted Pauli spin blockade is not clearly observed. However, the coexistence of the Coulomb and triplet Pauli spin blockades as a result of the thermal energy is clearly obtained in the calculation of the probability of the spin state in the double dots.
One obstacle that has slowed the development of electrically gated metal-oxide-semiconductor (MOS) singlet-triplet qubits is the frequent lack of observed spin blockade, even in samples with large singlet-triplet energy splittings. We present theoret ical and experimental evidence that the cause of this problem in MOS double quantum dots is the stray positive charges in the oxide inducing accidental levels near the devices active region that allow spin blockade lifting. We also present evidence that these effects can be mitigated by device design modifications, such as overlapping gates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا