ﻻ يوجد ملخص باللغة العربية
Radiation damage to space-based Charge-Coupled Device (CCD) detectors creates defects which result in an increasing Charge Transfer Inefficiency (CTI) that causes spurious image trailing. Most of the trailing can be corrected during post-processing, by modelling the charge trapping and moving electrons back to where they belong. However, such correction is not perfect -- and damage is continuing to accumulate in orbit. To aid future development, we quantify the limitations of current approaches, and determine where imperfect knowledge of model parameters most degrade measurements of photometry and morphology. As a concrete application, we simulate $1.5times10^{9}$ worst case galaxy and $1.5times10^{8}$ star images to test the performance of the Euclid visual instrument detectors. There are two separable challenges: If the model used to correct CTI is perfectly the same as that used to add CTI, $99.68$ % of spurious ellipticity is corrected in our setup. This is because readout noise is not subject to CTI, but gets over-corrected during correction. Second, if we assume the first issue to be solved, knowledge of the charge trap density within $Deltarho/rho!=!(0.0272pm0.0005)$ %, and the characteristic release time of the dominant species to be known within $Deltatau/tau!=!(0.0400pm0.0004)$ % will be required. This work presents the next level of definition of in-orbit CTI calibration procedures for Euclid.
Charge-Coupled Device (CCD) detectors, widely used to obtain digital imaging, can be damaged by high energy radiation. Degraded images appear blurred, because of an effect known as Charge Transfer Inefficiency (CTI), which trails bright objects as th
In an attempt to select stars that can host planets with characteristics similar to our own, we selected seven solar-type stars known to host planets in the habitable zone and for which spectroscopic stellar parameters are available. For these stars
Strong interaction physics under extreme conditions of high temperature and/or density is of central interest in modern nuclear physics for experimentalists and theorists alike. In order to investigate such systems, model approaches that include hadr
The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in
Experimentally and mysteriously, the concentration of quasiparticles in a gapped superconductor at low temperatures always by far exceeds its equilibrium value. We study the dynamics of localized quasiparticles in superconductors with a spatially flu