ترغب بنشر مسار تعليمي؟ اضغط هنا

How alien can alien worlds be?

68   0   0.0 ( 0 )
 نشر من قبل Vardan Adibekyan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In an attempt to select stars that can host planets with characteristics similar to our own, we selected seven solar-type stars known to host planets in the habitable zone and for which spectroscopic stellar parameters are available. For these stars we estimated empirical abundances of O, C, Mg and Si, which in turn we used to derive the iron and water mass fraction of the planet building blocks with the use of the model presented in Santos et al. (2015). Our results show that if rocky planets orbit these stars they might have significantly different compositions between themselves and different from that of our Earth. However, for a meaningful comparison between the compositional properties of exoplanets in the habitable zone and our own planet, a far more sophisticated analysis (e.g. Dorn et al., 2017) of a large number of systems with precise mass and radius of planets, and accurate chemical abundances of the host stars. The work presented here is merely the first humble step in this direction.



قيم البحث

اقرأ أيضاً

[Abridged] To simulate the kinds of observations that will eventually be obtained for exoplanets, the Deep Impact spacecraft obtained light curves of Earth at seven wavebands spanning 300-1000 nm as part of the EPOXI mission of opportunity. In this p aper we analyze disc-integrated light curves, treating Earth as if it were an exoplanet, to determine if we can detect the presence of oceans and continents. We present two observations each spanning one day, taken at gibbous phases. The rotation of the planet leads to diurnal albedo variations of 15-30%, with the largest relative changes occuring at the reddest wavelengths. To characterize these variations in an unbiased manner we carry out a principal component analysis of the multi-band light curves; this analysis reveals that 98% of the diurnal color changes of Earth are due to only 2 dominant eigencolors. We use the time-variations of these two eigencolors to construct longitudinal maps of the Earth, treating it as a non-uniform Lambert sphere. We find that the spectral and spatial distributions of the eigencolors correspond to cloud-free continents and oceans; this despite the fact that our observations were taken on days with typical cloud cover. We also find that the near-infrared wavebands are particularly useful in distinguishing between land and water. Based on this experiment we conclude that it should be possible to infer the existence of water oceans on exoplanets with time-resolved broadband observations taken by a large space-based coronagraphic telescope.
AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run Al iEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Storage Element and Computing Element), and act as interface nodes between the systems. An EDG Resource Broker is seen by the AliEn server as a single Computing Element, while the EDG storage is seen by AliEn as a single, large Storage Element; files produced in EDG sites are registered in both the EDG Replica Catalogue and in the AliEn Data Catalogue, thus ensuring accessibility from both worlds. In fact, both registrations are required: the AliEn one is used for the data management, the EDG one to guarantee the integrity and access to EDG produced data. A prototype interface has been successfully deployed using the ALICE AliEn Server and the EDG and DataTAG Testbeds.
We study the evolution of protoplanetary discs that would have been precursors of a Trappist-1 like system under the action of accretion and external photoevaporation in different radiation environments. Dust grains swiftly grow above the critical si ze below which they are entrained in the photoevaporative wind, so although gas is continually depleted, dust is resilient to photoevaporation after only a short time. This means that the ratio of the mass in solids (dust plus planetary) to the mass in gas rises steadily over time. Dust is still stripped early on, and the initial disc mass required to produce the observed $4,M_{oplus}$ of Trappist-1 planets is high. For example, assuming a Fatuzzo & Adams (2008) distribution of UV fields, typical initial disc masses have to be $>30,$per cent the stellar (which are still Toomre $Q$ stable) for the majority of similar mass M dwarfs to be viable hosts of the Trappist-1 planets. Even in the case of the lowest UV environments observed, there is a strong loss of dust due to photoevaporation at early times from the weakly bound outer regions of the disc. This minimum level of dust loss is a factor two higher than that which would be lost by accretion onto the star during 10 Myr of evolution. Consequently even in these least irradiated environments, discs that are viable Trappist-1 precursors need to be initially massive ($>10,$per cent of the stellar mass).
Strong interaction physics under extreme conditions of high temperature and/or density is of central interest in modern nuclear physics for experimentalists and theorists alike. In order to investigate such systems, model approaches that include hadr ons and quarks in a unified approach, will be discussed. Special attention will be given to high-density matter as it occurs in neutron stars. Given the current observational limits for neutron star masses, the properties of hyperonic and hybrid stars will be determined. In this context especially the question of the extent, to which exotic particles like hyperons and quarks affect star masses, will be discussed.
98 - Yudai Suwa 2014
A rapidly rotating neutron star with strong magnetic fields, called magnetar, is a possible candidate for the central engine of long gamma-ray bursts and hypernovae (HNe). We solve the evolution of a shock wave driven by the wind from magnetar and ev aluate the temperature evolution, by which we estimate the amount of $^{56}$Ni that produces a bright emission of HNe. We obtain a constraint on the magnetar parameters, namely the poloidal magnetic field strength ($B_p$) and initial angular velocity ($Omega_i$), for synthesizing enough $^{56}$Ni mass to explain HNe ($M_{^{56}mathrm{Ni}}gtrsim 0.2M_odot$), i.e. $(B_p/10^{16}~mathrm{G})^{1/2}(Omega_i/10^4~mathrm{rad~s}^{-1})gtrsim 0.7$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا