ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy, stability, and harmonic map flow

154   0   0.0 ( 0 )
 نشر من قبل Jeffrey Streets
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by work of Colding-Minicozzi on mean curvature flow, Zhang introduced a notion of entropy stability for harmonic map flow. We build further upon this work in several directions. First we prove the equivalence of entropy stability with a more computationally tractable $mathcal F$-stability. Then, focusing on the case of spherical targets, we prove a general instability result for high-entropy solitons. Finally, we exploit results of Lin-Wang to observe long time existence and convergence results for maps into certain convex domains and how they relate to generic singularities of harmonic map flow.



قيم البحث

اقرأ أيضاً

Following work of Colding-Minicozzi, we define a notion of entropy for connections over $mathbb R^n$ which has shrinking Yang-Mills solitons as critical points. As in Colding-Minicozzi, this entropy is defined implicitly, making it difficult to work with analytically. We prove a theorem characterizing entropy stability in terms of the spectrum of a certain linear operator associated to the soliton. This leads furthermore to a gap theorem for solitons. These results point to a broader strategy of studying generic singularities of Yang-Mills flow, and we discuss the differences in this strategy in dimension $n=4$ versus $n geq 5$.
153 - Jurgen Jost , Jingyong Zhu 2019
In this paper, we discuss the general existence theory of Dirac-harmonic maps from closed surfaces via the heat flow for $alpha$-Dirac-harmonic maps and blow-up analysis. More precisely, given any initial map along which the Dirac operator has nontri vial minimal kernel, we first prove the short time existence of the heat flow for $alpha$-Dirac-harmonic maps. The obstacle to the global existence is the singular time when the kernel of the Dirac operator no longer stays minimal along the flow. In this case, the kernel may not be continuous even if the map is smooth with respect to time. To overcome this issue, we use the analyticity of the target manifold to obtain the density of the maps along which the Dirac operator has minimal kernel in the homotopy class of the given initial map. Then, when we arrive at the singular time, this density allows us to pick another map which has lower energy to restart the flow. Thus, we get a flow which may not be continuous at a set of isolated points. Furthermore, with the help of small energy regularity and blow-up analysis, we finally get the existence of nontrivial $alpha$-Dirac-harmonic maps ($alphageq1$) from closed surfaces. Moreover, if the target manifold does not admit any nontrivial harmonic sphere, then the map part stays in the same homotopy class as the given initial map.
In this article, we will use the harmonic mean curvature flow to prove a new class of Alexandrov-Fenchel type inequalities for strictly convex hypersurfaces in hyperbolic space in terms of total curvature, which is the integral of Gaussian curvature on the hypersurface. We will also use the harmonic mean curvature flow to prove a new class of geometric inequalities for horospherically convex hypersurfaces in hyperbolic space. Using these new Alexandrov-Fenchel type inequalities and the inverse mean curvature flow, we obtain an Alexandrov-Fenchel inequality for strictly convex hypersurfaces in hyperbolic space, which was previously proved for horospherically convex hypersurfaces by Wang and Xia [44]. Finally, we use the mean curvature flow to prove a new Heintze-Karcher type inequality for hypersurfaces with positive Ricci curvature in hyperbolic space.
We give a twistorial interpretation of geometric structures on a Riemannian manifold, as sections of homogeneous fibre bundles, following an original insight by Wood (2003). The natural Dirichlet energy induces an abstract harmonicity condition, whic h gives rise to a geometric gradient flow. We establish a number of analytic properties for this flow, such as uniqueness, smoothness, short-time existence, and some sufficient conditions for long-time existence. This description potentially subsumes a large class of geometric PDE problems from different contexts. As applications, we recover and unify a number of results in the literature: for the isometric flow of ${rm G}_2$-structures, by Grigorian (2017, 2019), Bagaglini (2019), and Dwivedi-Gianniotis-Karigiannis (2019); and for harmonic almost complex structures, by He (2019) and He-Li (2019). Our theory also establishes original properties regarding harmonic flows of parallelisms and almost contact structures.
We verify a conjecture of Perelman, which states that there exists a canonical Ricci flow through singularities starting from an arbitrary compact Riemannian 3-manifold. Our main result is a uniqueness theorem for such flows, which, together with an earlier existence theorem of Lott and the second named author, implies Perelmans conjecture. We also show that this flow through singularities depends continuously on its initial condition and that it may be obtained as a limit of Ricci flows with surgery. Our results have applications to the study of diffeomorphism groups of three manifolds --- in particular to the Generalized Smale Conjecture --- which will appear in a subsequent paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا