ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy, Stability, and Yang-Mills flow

247   0   0.0 ( 0 )
 نشر من قبل Jeffrey Streets
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Following work of Colding-Minicozzi, we define a notion of entropy for connections over $mathbb R^n$ which has shrinking Yang-Mills solitons as critical points. As in Colding-Minicozzi, this entropy is defined implicitly, making it difficult to work with analytically. We prove a theorem characterizing entropy stability in terms of the spectrum of a certain linear operator associated to the soliton. This leads furthermore to a gap theorem for solitons. These results point to a broader strategy of studying generic singularities of Yang-Mills flow, and we discuss the differences in this strategy in dimension $n=4$ versus $n geq 5$.



قيم البحث

اقرأ أيضاً

232 - Casey Lynn Kelleher 2015
We define a family of functionals generalizing the Yang-Mills functional. We study the corresponding gradient flows and prove long-time existence and convergence results for subcritical dimensions as well as a bubbling criterion for the critical dime nsions. Consequently, we have an alternate proof of the convergence of Yang-Mills flow in dimensions 2 and 3 given by Rade and the bubbling criterion in dimension 4 of Struwe in the case where the initial flow data is smooth.
97 - Jixiang Fu , Dekai Zhang 2021
We study a new deformed Hermitian Yang-Mills Flow in the supercritical case. Under the same assumption on the subsolution as Collins-Jacob-Yau cite{cjy2020cjm}, we show the longtime existence and the solution converges to a solution of the deformed H ermitian Yang-Mills equation which was solved by Collins-Jacob-Yau cite{cjy2020cjm} by the continuity method.
We study singularity structure of Yang-Mills flow in dimensions $n geq 4$. First we obtain a description of the singular set in terms of concentration for a localized entropy quantity, which leads to an estimate of its Hausdorff dimension. We develop a theory of tangent measures for the flow, which leads to a stratification of the singular set. By a refined blowup analysis we obtain Yang-Mills connections or solitons as blowup limits at any point in the singular set.
Inspired by work of Colding-Minicozzi on mean curvature flow, Zhang introduced a notion of entropy stability for harmonic map flow. We build further upon this work in several directions. First we prove the equivalence of entropy stability with a more computationally tractable $mathcal F$-stability. Then, focusing on the case of spherical targets, we prove a general instability result for high-entropy solitons. Finally, we exploit results of Lin-Wang to observe long time existence and convergence results for maps into certain convex domains and how they relate to generic singularities of harmonic map flow.
122 - Jeffrey Streets 2021
We give a complete description of the global existence and convergence for the Ricci-Yang-Mills flow on $T^k$ bundles over Riemann surfaces. These results equivalently describe solutions to generalized Ricci flow and pluriclosed flow with symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا