ترغب بنشر مسار تعليمي؟ اضغط هنا

Subaru Telescope adaptive optics observations of gravitationally lensed quasars in the Sloan Digital Sky Survey

157   0   0.0 ( 0 )
 نشر من قبل Cristian Eduard Rusu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 28 gravitationally lensed quasars (23 doubles, 1 quad, and 1 possible triple, and 3 candidates) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in 5 systems, without a-priory knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low-resolution data, and we show that in our sample of lensing galaxies the observed light profile is more elliptical than the mass, for ellipticity > 0.25. We also identify eight doubles for which the sources of external and internal shear are more reliably separated, and should therefore be prioritized in monitoring campaigns aimed at measuring time-delays in order to infer the Hubble constant.



قيم البحث

اقرأ أيضاً

We present the discovery of four gravitationally lensed quasars selected from the spectroscopic quasar catalog of the Sloan Digital Sky Survey. We describe imaging and spectroscopic follow-up observations that support the lensing interpretation of th e following four quasars: SDSS J0832+0404 (image separation theta=1.98, source redshift z_s=1.115, lens redshift z_l=0.659); SDSS J1216+3529 (theta=1.49, z_s=2.012); SDSS J1322+1052 (theta=2.00, z_s=1.716); and SDSS J1524+4409 (theta=1.67, z_s=1.210, z_l=0.320). Each system has two lensed images. We find that the fainter image component of SDSS J0832+0404 is significantly redder than the brighter component, perhaps because of differential reddening by the lensing galaxy. The lens potential of SDSS J1216+3529 might be complicated by the presence of a secondary galaxy near the main lensing galaxy.
We present the discovery of 3 quasar lenses in the Sloan Digital Sky Survey (SDSS), selected using two novel photometry-based selection techniques. The J0941+0518 system, with two point sources separated by 5.46 on either side of a galaxy, has source and lens redshifts $z_s = 1.54$ and $z_l = 0.343$. The AO-assisted images of J2211+1929 show two point sources separated by 1.04, corresponding to the same quasar at $z_s = 1.07,$ besides the lens galaxy and Einstein ring. Images of J2257+2349 show two point sources separated by 1.67 on either side of an E/S0 galaxy. The extracted spectra show two images of the same quasar at redshift $z_s = 2.10$. In total, the two selection techniques identified 309 lens candidates, including 47 known lenses, and 6 previously ruled out candidates. 55 of the remaining candidates were observed using NIRC2 and ESI at Keck Observatory, EFOSC2 at the ESO-NTT (La Silla), and SAM and the Goodman spectrograph at SOAR. Of the candidates observed, 3 were confirmed as lenses, 36 were ruled out, and 16 remain inconclusive. Taking into account that we recovered known lenses, this gives us a success rate of at least 50/309 (16%). This initial campaign demonstrates the power of purely photometric selection techniques in finding lensed quasars. Developing and refining these techniques is essential for efficient identification of these rare lenses in ongoing and future photometric surveys.
We present the result of Subaru Telescope multi-band adaptive optics observations of the complex gravitationally lensed quasar SDSS J1405+0959, which is produced by two lensing galaxies. These observations reveal dramatically enhanced morphological d etail, leading to the discovery of an additional object 0. 26 from the secondary lensing galaxy, as well as three collinear clumps located in between the two lensing galaxies. The new object is likely to be the third quasar image, although the possibility that it is a galaxy cannot be entirely excluded. If confirmed via future observations, it would be the first three image lensed quasar produced by two galaxy lenses. In either case, we show based on gravitational lensing models and photometric redshift that the collinear clumps represent merging images of a portion of the quasar host galaxy, with a magnification factor of 15 - 20, depending on the model.
We report the discoveries of two, two-image gravitationally lensed quasars selected from the Sloan Digital Sky Survey: SDSS J0806+2006 at z_s=1.540 and SDSS J1353+1138 at z_s=1.629 with image separations of 1.40 and 1.41 respectively. Spectroscopic a nd optical/near-infrared imaging follow-up observations show that the quasar images have identical redshifts and possess extended objects between the images that are likely to be lens galaxies at z_l~0.6 in SDSS J0806+2006 and z_l~0.3 in SDSS J1353+1138. The field of SDSS J0806+2006 contains several nearby galaxies that may significantly perturb the system, and SDSS J1353+1138 has an extra component near its Einstein ring that is probably a foreground star. Simple mass models with reasonable parameters reproduce the quasar positions and fluxes of both systems.
For the first time spectroscopic galaxy redshift surveys are reaching the scales where galaxies can be studied together with the nearest quasars. This gives an opportunity to study the dependence between the activity of a quasar and its environment i n a more extensive way than before. We study the spatial distribution of galaxies and groups of galaxies in the environments of low redshift quasars in the Sloan Digital Sky Survey (SDSS). Our aim is to understand how the nearby quasars are embedded in the local and global density field of galaxies and how the environment affects quasar activity. We analyse the environments of nearby quasars using number counts of galaxies. We also study the dependence of group properties to their distance to the nearest quasar. The large scale environments are studied by analysing the locations of quasars in the luminosity density field. Our study of the number counts of galaxies in quasar environments shows an underdensity of bright galaxies at a few Mpc from quasars. Also, the groups of galaxies that have a quasar closer than 2Mpc are poorer and less luminous than in average. Our analysis on the luminosity density field shows that quasars clearly avoid rich superclusters. Nearby quasars seem to be located in outskirts of superclusters or in filaments connecting them. Our results suggest that quasar evolution may be affected by density variations both on supercluster scales and in the local environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا