ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive optics observations of the gravitationally lensed quasar SDSS J1405+0959

217   0   0.0 ( 0 )
 نشر من قبل Cristian Eduard Rusu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the result of Subaru Telescope multi-band adaptive optics observations of the complex gravitationally lensed quasar SDSS J1405+0959, which is produced by two lensing galaxies. These observations reveal dramatically enhanced morphological detail, leading to the discovery of an additional object 0. 26 from the secondary lensing galaxy, as well as three collinear clumps located in between the two lensing galaxies. The new object is likely to be the third quasar image, although the possibility that it is a galaxy cannot be entirely excluded. If confirmed via future observations, it would be the first three image lensed quasar produced by two galaxy lenses. In either case, we show based on gravitational lensing models and photometric redshift that the collinear clumps represent merging images of a portion of the quasar host galaxy, with a magnification factor of 15 - 20, depending on the model.



قيم البحث

اقرأ أيضاً

We report the discovery of 13 confirmed two-image quasar lenses from a systematic search for gravitationally lensed quasars in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). We adopted a methodology similar to that used in the SDSS Quas ar Lens Search (SQLS). In addition to the confirmed lenses, we report 11 quasar pairs with small angular separations ($lesssim$2) confirmed from our spectroscopy, which are either projected pairs, physical binaries, or possibly quasar lens systems whose lens galaxies have not yet been detected. The newly discovered quasar lens system, SDSS J1452+4224 at zs$approx$4.8 is one of the highest redshift multiply imaged quasars found to date. Furthermore, we have over 50 good lens candidates yet to be followed up. Owing to the heterogeneous selection of BOSS quasars, the lens sample presented here does not have a well-defined selection function.
We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/HDS, we performed high-resolution ($R$ $sim$ 36,00 0) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at $z_{em}$ $sim$ 2.197) whose image separation angle, $theta$ $sim$ 22$^{primeprime}!!$.5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in the images A and B discovered by Misawa et al. (2013) remains unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, $Delta t$ $sim$ 744 days, but rather due to differences along the sightlines. We also discovered time variation of C IV absorption strength in both images A and B, due to change of ionization condition. If a typical absorbers size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars.
We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 28 gravitationally lensed quasars (23 doubles, 1 quad, and 1 possible triple, and 3 candidates) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in 5 systems, without a-priory knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low-resolution data, and we show that in our sample of lensing galaxies the observed light profile is more elliptical than the mass, for ellipticity > 0.25. We also identify eight doubles for which the sources of external and internal shear are more reliably separated, and should therefore be prioritized in monitoring campaigns aimed at measuring time-delays in order to infer the Hubble constant.
We present the first VLT near-IR observations of a gravitationally lensed quasar, using adaptive optics and laser guide star. These observations can be considered as a test bench for future systematic observations of lensed quasars with adaptive opti cs, even when bright natural guide stars are not available in the nearby field. With only 14 minutes of observing time, we derived very accurate astrometry of the quasar images and of the lensing galaxy, with 0.05 arcsec spatial resolution, comparable to the Hubble Space Telescope (HST). In combination with deep VLT optical spectra of the quasar images, we use our adaptive optics images to constrain simple models for the mass distribution of the lensing galaxy. The latter is almost circular and does not need any strong external shear to fit the data. The time delay predicted for SDSS0806+2006, assuming a singular isothermal ellipsoid model and the concordance cosmology, is Delta t simeq 50 days. Our optical spectra indicate a flux ratio between the quasar images of A/B=1.3 in the continuum and A/B=2.2 in both the MgII and in the CIII] broad emission lines. This suggests that microlensing affects the continuum emission. However, the constant ratio between the two emission lines indicates that the broad emission line region is not microlensed. Finally, we see no evidence of reddening by dust in the lensing galaxy.
We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089 A) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770A) monitoring spanning eleven years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5x10^13 and 10^15 cm, and we find an upper limit of 10^15 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7 GM_BH/c^2 for a 2.8x10^8 M_sol black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 10^14 cm < r_1/2,UV < 3x10^15 cm. Finally, the optical size is significantly larger, by 1.5*sigma, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا