ترغب بنشر مسار تعليمي؟ اضغط هنا

NuSTAR Reveals Extreme Absorption in z < 0.5 Type 2 Quasars

195   0   0.0 ( 0 )
 نشر من قبل George Lansbury
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intrinsic column density (NH) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z<1, the X-ray spectra can only be reliably characterized using broad-band measurements which extend to energies above 10 keV. Using the hard X-ray observatory NuSTAR, along with archival Chandra and XMM-Newton data, we study the broad-band X-ray spectra of nine optically selected (from the SDSS), candidate Compton-thick (NH > 1.5e24 cm^-2) type 2 quasars (CTQSO2s); five new NuSTAR observations are reported herein, and four have been previously published. The candidate CTQSO2s lie at z<0.5, have observed [OIII] luminosities in the range 8.4 < log (L_[OIII]/L_solar) < 9.6, and show evidence for extreme, Compton-thick absorption when indirect absorption diagnostics are considered. Amongst the nine candidate CTQSO2s, five are detected by NuSTAR in the high energy (8-24 keV) band: two are weakly detected at the ~ 3 sigma confidence level and three are strongly detected with sufficient counts for spectral modeling (>~ 90 net source counts at 8-24 keV). For these NuSTAR-detected sources direct (i.e., X-ray spectral) constraints on the intrinsic AGN properties are feasible, and we measure column densities ~2.5-1600 times higher and intrinsic (unabsorbed) X-ray luminosities ~10-70 times higher than pre-NuSTAR constraints from Chandra and XMM-Newton. Assuming the NuSTAR-detected type 2 quasars are representative of other Compton-thick candidates, we make a correction to the NH distribution for optically selected type 2 quasars as measured by Chandra and XMM-Newton for 39 objects. With this approach, we predict a Compton-thick fraction of f_CT = 36^{+14}_{-12} %, although higher fractions (up to 76%) are possible if indirect absorption diagnostics are assumed to be reliable.



قيم البحث

اقرأ أيضاً

We present NuSTAR hard X-ray (3-79 keV) observations of three Type 2 quasars at z ~ 0.4-0.5, optically selected from the Sloan Digital Sky Survey (SDSS). Although the quasars show evidence for being heavily obscured Compton-thick systems on the basis of the 2-10 keV to [OIII] luminosity ratio and multiwavelength diagnostics, their X-ray absorbing column densities (N_H) are poorly known. In this analysis: (1) we study X-ray emission at >10 keV, where X-rays from the central black hole are relatively unabsorbed, in order to better constrain N_H; (2) we further characterize the physical properties of the sources through broad-band near-UV to mid-IR spectral energy distribution (SED) analyses. One of the quasars is detected with NuSTAR at >8 keV with a no-source probability of <0.1%, and its X-ray band ratio suggests near Compton-thick absorption with N_H gtrsim 5 x 10^23 cm^-2. The other two quasars are undetected, and have low X-ray to mid-IR luminosity ratios in both the low energy (2-10 keV) and high energy (10-40 keV) X-ray regimes that are consistent with extreme, Compton-thick absorption (N_H gtrsim 10^24 cm^-2). We find that for quasars at z ~ 0.5, NuSTAR provides a significant improvement compared to lower energy (<10 keV) Chandra and XMM-Newton observations alone, as higher column densities can now be directly constrained.
We present new X-ray observations of luminous heavily dust-reddened quasars (HRQs) selected from infrared sky surveys. HRQs appear to be a dominant population at high redshifts and the highest luminosities, and may be associated with a transitional b lowout phase of black hole and galaxy co-evolution models. Despite this, their high-energy properties have been poorly known. We use the overall sample of $10$ objects with XMM-Newton coverage to study the high-energy properties of HRQs at $left< L_{rm bol} right> = 10^{47.5}$ erg/s and $left< z right>= 2.5$. For the seven sources with strong X-ray detections, we perform spectral analyses. These find a median X-ray luminosity of $left< L_{rm 2-10,keV} right> = 10^{45.1}$ erg/s, comparable to the most powerful X-ray quasars known. The gas column densities are $N_{rm H}=(1$-$8)times 10^{22}$ cm$^{-2}$, in agreement with the amount of dust extinction observed. The dust to gas ratios are sub-Galactic, but are higher than found in local AGN. The intrinsic X-ray luminosities of HRQs are weak compared to the mid-infrared ($L_{rm 6mu m}$) and bolometric luminosities ($L_{rm bol}$), in agreement with findings for other luminous quasar samples. For instance, the X-ray to bolometric corrections range from $kappa_{rm bol}approx 50$-$3000$. The moderate absorption levels and accretion rates close to the Eddington limit ($left< lambda_{rm Edd} right>=1.06$) are in agreement with a quasar blowout phase. Indeed, we find that the HRQs lie in the forbidden region of the $N_{rm H}$-$lambda_{rm Edd}$ plane, and therefore that radiation pressure feedback on the dusty interstellar medium may be driving a phase of blowout that has been ongoing for a few $10^{5}$ years. The wider properties, including [OIII] narrow-line region kinematics, broadly agree with this interpretation.
We present spectra of six luminous quasars at z ~ 2, covering rest wavelengths 1600-3200 A. The fluxes of the UV Fe II emission lines and Mg II 2798 doublet, the line widths of Mg II, and the 3000 A luminosity were obtained from the spectra. These qu antities were compared with those of low-redshift quasars at z = 0.06 - 0.55 studied by Tsuzuki et al. In a plot of the Fe II(UV)/Mg II flux ratio as a function of the cental black hole mass, Fe II(UV)/Mg II in our z ~ 2 quasars is systematically greater than in the low-redshift quasars. We confermed that luminosity is not responsible for this excess. It is unclear whether this excess is caused by rich Fe abundance at z ~ 2 over low-redshift or by non-abundance effects such as high gas density, strong radiation field, and high microturbulent velocity.
PG1247+267 is one of the most luminous known quasars at $zsim2$ and is a strongly super-Eddington accreting SMBH candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveragi ng the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law ($Gamma=2.3pm0.1$); the weak ionized Fe emission line and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Compton thick, partial covering absorber; and iii) a relativistic disk reflector in a lamp-post geometry, with low coronal height and high BH spin. The first model is able to explain the high reflection component in terms of variability. The second does not require any reflection to reproduce the hard emission, while a rather low high-energy cutoff of $sim100$ keV is detected for the first time in such a high redshift source. The third model require a face-on geometry, which may affect the SMBH mass and Eddington ratio measurements. Deeper X-ray broad-band data are required in order to distinguish between these possibilities.
We present two new NuSTAR observations of the narrow line Seyfert 1 (NLS1) galaxy Mrk 766 and give constraints on the two scenarios previously proposed to explain its spectrum and that of other NLS1s: relativistic reflection and partial covering. The NuSTAR spectra show a strong hard (>15 keV) X-ray excess, while simultaneous soft X-ray coverage of one of the observations provided by XMM-Newton constrains the ionised absorption in the source. The pure reflection model requires a black hole of high spin ($a>0.92$) viewed at a moderate inclination ($i=46^{+1}_{-4}$ degrees). The pure partial covering model requires extreme parameters: the cut-off of the primary continuum is very low ($22^{+7}_{-5}$ keV) in one observation and the intrinsic X-ray emission must provide a large fraction (75%) of the bolometric luminosity. Allowing a hybrid model with both partial covering and reflection provides more reasonable absorption parameters and relaxes the constraints on reflection parameters. The fractional variability reduces around the iron K band and at high energies including the Compton hump, suggesting that the reflected emission is less variable than the continuum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا