ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultraviolet Fe II emission in z ~ 2 quasars

162   0   0.0 ( 0 )
 نشر من قبل Hiroaki Sameshima
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present spectra of six luminous quasars at z ~ 2, covering rest wavelengths 1600-3200 A. The fluxes of the UV Fe II emission lines and Mg II 2798 doublet, the line widths of Mg II, and the 3000 A luminosity were obtained from the spectra. These quantities were compared with those of low-redshift quasars at z = 0.06 - 0.55 studied by Tsuzuki et al. In a plot of the Fe II(UV)/Mg II flux ratio as a function of the cental black hole mass, Fe II(UV)/Mg II in our z ~ 2 quasars is systematically greater than in the low-redshift quasars. We confermed that luminosity is not responsible for this excess. It is unclear whether this excess is caused by rich Fe abundance at z ~ 2 over low-redshift or by non-abundance effects such as high gas density, strong radiation field, and high microturbulent velocity.



قيم البحث

اقرأ أيضاً

We have investigated the strength of ultraviolet Fe II emission from quasars within the environments of Large Quasar Groups (LQGs) in comparison with quasars elsewhere, for 1.1 <= <z_LQG> <= 1.7, using the DR7QSO catalogue of the Sloan Digital Sky Su rvey. We use the Weymann et al. W2400 equivalent width, defined between the rest-frame continuum-windows 2240-2255 and 2665-2695 Ang., as the measure of the UV Fe II emission. We find a significant shift of the W2400 distribution to higher values for quasars within LQGs, predominantly for those LQGs with 1.1 <= <z_LQG> <= 1.5. There is a tentative indication that the shift to higher values increases with the quasar i magnitude. We find evidence that within LQGs the ultrastrong emitters with W2400 >= 45 Ang. (more precisely, ultrastrong-plus with W2400 >= 44 Ang.) have preferred nearest-neighbour separations of ~ 30-50 Mpc to the adjacent quasar of any W2400 strength. No such effect is seen for the ultrastrong emitters that are not in LQGs. The possibilities for increasing the strength of the Fe II emission appear to be iron abundance, Ly-alpha fluorescence, and microturbulence, and probably all of these operate. The dense environment of the LQGs may have led to an increased rate of star formation and an enhanced abundance of iron in the nuclei of galaxies. Similarly the dense environment may have led to more active blackholes and increased Ly-alpha fluorescence. The preferred nearest-neighbour separation for the stronger emitters would appear to suggest a dynamical component, such as microturbulence. In one particular LQG, the Huge-LQG (the largest structure known in the early universe), six of the seven strongest emitters very obviously form three pairings within the total of 73 members.
We investigate the strength of ultraviolet Fe II emission in fainter quasars compared with brighter quasars for 1.0 <= z <= 1.8, using the SDSS (Sloan Digital Sky Survey) DR7QSO catalogue and spectra of Schneider et al., and the SFQS (SDSS Faint Quas ar Survey) catalogue and spectra of Jiang et al. We quantify the strength of the UV Fe II emission using the W2400 equivalent width of Weymann et al., which is defined between two rest-frame continuum windows at 2240-2255 and 2665-2695 Ang. The main results are the following. (1) We find that for W2400 >~ 25 Ang. there is a universal (i.e. for quasars in general) strengthening of W2400 with decreasing intrinsic luminosity, L3000. (2) In conjunction with previous work by Clowes et al., we find that there is a further, differential, strengthening of W2400 with decreasing L3000 for those quasars that are members of Large Quasar Groups (LQGs). (3) We find that increasingly strong W2400 tends to be associated with decreasing FWHM of the neighbouring Mg II {lambda}2798 broad emission line. (4) We suggest that the dependence of W2400 on L3000 arises from Ly{alpha} fluorescence. (5) We find that stronger W2400 tends to be associated with smaller virial estimates from Shen et al. of the mass of the central black hole, by a factor ~ 2 between the ultrastrong emitters and the weak. Stronger W2400 emission would correspond to smaller black holes that are still growing. The differential effect for LQG members might then arise from preferentially younger quasars in the LQG environments.
In the context of the FLASHLIGHT survey, we obtained deep narrow band images of 15 $zsim2$ quasars with GMOS on Gemini-South in an effort to measure Ly$alpha$ emission from circum- and inter-galactic gas on scales of hundreds of kpc from the central quasar. We do not detect bright giant Ly$alpha$ nebulae (SB~10$^{-17}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ at distances >50 kpc) around any of our sources, although we routinely ($simeq47$%) detect smaller scale <50 kpc Ly$alpha$ emission at this SB level emerging from either the extended narrow emission line regions powered by the quasars or by star-formation in their host galaxies. We stack our 15 deep images to study the average extended Ly$alpha$ surface brightness profile around $zsim2$ quasars, carefully PSF-subtracting the unresolved emission component and paying close attention to sources of systematic error. Our analysis, which achieves an unprecedented depth, reveals a surface brightness of SB$_{rm Lyalpha}sim10^{-19}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ at $sim200$ kpc, with a $2.3sigma$ detection of Ly$alpha$ emission at SB$_{rm Lyalpha}=(5.5pm3.1)times10^{-20}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ within an annulus spanning 50 kpc <R< 500 kpc from the quasars. Assuming this Ly$alpha$ emission is powered by fluorescence from highly ionized gas illuminated by the bright central quasar, we deduce an average volume density of $n_{rm H}=0.6times10^{-2}$ cm$^{-3}$ on these large scales. Our results are in broad agreement with the densities suggested by cosmological hydrodynamical simulations of massive ($Msimeq10^{12.5}M_odot$) quasar hosts, however they indicate that the typical quasars at these redshifts are surrounded by gas that is a factor of ~100 times less dense than the (~1 cm$^{-3}$) gas responsible for the giant bright Ly$alpha$ nebulae around quasars recently discovered by our group.
The observed line intensity ratios of the Si II 1263 and 1307 AA multiplets to that of Si II 1814,AA in the broad line region of quasars are both an order of magnitude larger than the theoretical values. This was first pointed out by Baldwin et al. ( 1996), who termed it the Si II disaster, and it has remained unresolved. We investigate the problem in the light of newly-published atomic data for Si II. Specifically, we perform broad line region calculations using several different atomic datasets within the CLOUDY modeling code under optically thick quasar cloud conditions. In addition, we test for selective pumping by the source photons or intrinsic galactic reddening as possible causes for the discrepancy, and also consider blending with other species. However, we find that none of the options investigated resolves the Si II disaster, with the potential exception of microturbulent velocity broadening and line blending. We find that a larger microturbulent velocity ($sim 500 rm , kms^{-1}$) may solve the Si II disaster through continuum pumping and other effects. The CLOUDY models indicate strong blending of the Si II 1307 AA multiplet with emission lines of O I, although the predicted degree of blending is incompatible with the observed 1263/1307 intensity ratios. Clearly, more work is required on the quasar modelling of not just the Si II lines but also nearby transitions (in particular those of O I) to fully investigate if blending may be responsible for the Si II disaster.
337 - M. Krips , R. Neri , P. Cox 2012
We present a search for CO emission in a sample of ten type-2 quasar host galaxies with redshifts of z=0.1-0.4. We detect CO(J=1-0) line emission with >=5sigma in the velocity integrated intensity maps of five sources. A sixth source shows a tentativ e detection at the ~4.5sigma level of its CO(J=1-0) line emission. The CO emission of all six sources is spatially coincident with the position at optical, infrared or radio wavelengths. The spectroscopic redshifts derived from the CO(J=1-0) line are very close to the photometric ones for all five detections except for the tentative detection for which we find a much larger discrepancy. We derive gas masses of ~(2-16)x10^9Msun for the CO emission in the six detected sources, while we constrain the gas masses to upper limits of Mgas<=8x10^9Msun for the four non-detections. These values are of the order or slightly lower than those derived for type-1 quasars. The line profiles of the CO(J=1-0) emission are rather narrow (<=300km/s) and single peaked, unveiling no typical signatures for current or recent merger activity, and are comparable to that of type-1 quasars. However, at least one of the observed sources shows a tidal-tail like emission in the optical that is indicative for an on-going or past merging event. We also address the problem of detecting spurious ~5sigma emission peaks within the field of view.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا