ﻻ يوجد ملخص باللغة العربية
The mean-field dynamics of a Bose gas is shown to break down at time $tau_h = (c_1/gamma) ln N$ where $gamma$ is the Lyapunov exponent of the mean-field theory, $N$ is the number of bosons, and $c_1$ is a system-dependent constant. The breakdown time $tau_h$ is essentially the Ehrenfest time that characterizes the breakdown of the correspondence between classical and quantum dynamics. This breakdown can be well described by the quantum fidelity defined for reduced density matrices. Our results are obtained with the formalism in particle-number phase space and are illustrated with a triple-well model. The logarithmic quantum-classical correspondence time may be verified experimentally with Bose-Einstein condensates.
We present a novel approach to modeling dynamics of trapped, degenerate, weakly interacting Bose gases beyond the mean field limit. We transform a many-body problem to the interaction representation with respect to a suitably chosen part of the Hamil
We present a detailed beyond-mean-field analysis of a weakly interacting Bose gas in the crossover from three to low dimensions. We find an analytical solution for the energy and provide a clear qualitative picture of the crossover in the case of a b
In quantum gases with contact repulsion, the distribution of momenta of the atoms typically decays as $sim 1/|p|^4$ at large momentum $p$. Tans relation connects the amplitude of that $1/|p|^4$ tail to the adiabatic derivative of the energy with resp
Describing partially-condensed Bose gases poses a long-standing theoretical challenge. We present exact stochastic Ehrenfest relations for the stochastic projected Gross-Pitaevskii equation, including both number and energy damping mechanisms, and al
Understanding strongly correlated phases of matter, from the quark-gluon plasma to neutron stars, and in particular the dynamics of such systems, $e.g.$ following a Hamiltonian quench, poses a fundamental challenge in modern physics. Ultracold atomic