ﻻ يوجد ملخص باللغة العربية
We introduce the concept of finitely coloured equivalence for unital *-homomorphisms between C*-algebras, for which unitary equivalence is the 1-coloured case. We use this notion to classify *-homomorphisms from separable, unital, nuclear C*-algebras into ultrapowers of simple, unital, nuclear, Z-stable C*-algebras with compact extremal trace space up to 2-coloured equivalence by their behaviour on traces; this is based on a 1-coloured classification theorem for certain order zero maps, also in terms of tracial data. As an application we calculate the nuclear dimension of non-AF, simple, separable, unital, nuclear, Z-stable C*-algebras with compact extremal trace space: it is 1. In the case that the extremal trace space also has finite topological covering dimension, this confirms the remaining open implication of the Toms-Winter conjecture. Inspired by homotopy-rigidity theorems in geometry and topology, we derive a homotopy equivalence implies isomorphism result for large classes of C*-algebras with finite nuclear dimension.
We compute the nuclear dimension of separable, simple, unital, nuclear, Z-stable C*-algebras. This makes classification accessible from Z-stability and in particular brings large classes of C*-algebras associated to free and minimal actions of amenab
The class of simple separable KK-contractible (KK-equivalent to ${0}$) C*-algebras which have finite nuclear dimension is shown to be classified by the Elliott invariant. In particular, the class of C*-algebras $Aotimes mathcal W$ is classifiable, wh
We study flows on C*-algebras with the Rokhlin property. We show that every Kirchberg algebra carries a unique Rokhlin flow up to cocycle conjugacy, which confirms a long-standing conjecture of Kishimoto. We moreover present a classification theory f
Let $C$ and $A$ be two unital separable amenable simple C*-algebras with tracial rank no more than one. Suppose that $C$ satisfies the Universal Coefficient Theorem and suppose that $phi_1, phi_2: Cto A$ are two unital monomorphisms. We show that the
This paper is an expanded version of the lectures I delivered at the Indian Statistical Institute, Bangalore, during the OTOA 2014 conference.