ﻻ يوجد ملخص باللغة العربية
Phonon transmission across an interface between dissimilar crystalline solids is calculated using molecular dynamics simulations with interatomic force constants obtained from first principles. The results reveal that although inelastic phonon-transmission right at the geometrical interface can become far greater than the elastic one, its contribution to thermal boundary conductance (TBC) is severely limited by the transition regions, where local phonon states at the interface recover the bulk state over a finite thickness. This suggests TBC can be increased by enhancing phonon equilibration in the transition region for instance by phonon scattering, which is demonstrated by increasing the lattice anharmonicity.
We report nanoscale bandgap engineering via a local strain across the inhomogeneous ferroelectric interface, which is controlled by the visible-light-excited probe voltage. Switchable photovolatic effects and the spectral response of the photocurrent
SrRuO3 (SRO), a conducting transition metal oxide, is commonly used for engineering domains in BiFeO3. New oxide devices can be envisioned by integrating SRO with an oxide semiconductor as Nb doped SrTiO3 (Nb:STO). Using a three-terminal device confi
GaN-based HEMTs have the potential to be widely used in high-power and high-frequency electronics while their maximum output powers are limited by high channel temperature induced by near-junction Joule-heating, which degrades device performance and
We use the extended Lifshitz theory to study the behaviors of the Casimir forces between finite-thickness effective medium slabs. We first study the interaction between a semi-infinite Drude metal and a finite-thickness magnetic slab with or without
Despite the ubiquity of applications of heat transport across nanoscale interfaces, including integrated circuits, thermoelectrics, and nanotheranostics, an accurate description of phonon transport in these systems remains elusive. Here we present a