ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial Growth of Two-Dimensional Stanene

129   0   0.0 ( 0 )
 نشر من قبل Jinfeng Jia
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrathin semiconductors present various novel electronic properties. The first experimental realized two-dimensional (2D) material is graphene. Searching 2D materials with heavy elements bring the attention to Si, Ge and Sn. 2D buckled Si-based silicene was realized by molecular beam epitaxy (MBE) growth1,2. Ge-based germanene was realized by mechanical exfoliation3. Sn-based stanene has its unique properties. Stanene and its derivatives can be 2D topological insulators (TI) with a very large band gap as proposed by first-principles calculations4, or can support enhanced thermoelectric performance5, topological superconductivity6 and the near-room-temperature quantum anomalous Hall (QAH) effect7. For the first time, in this work, we report a successful fabrication of 2D stanene by MBE. The atomic and electronic structures were determined by scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) in combination with first-principles calculations. This work will stimulate the experimental study and exploring the future application of stanene.



قيم البحث

اقرأ أيضاً

The hybrid perovskite CH3NH3PbX3 (X= Cl, Br, I) is a promising material for developing novel optoelectronic devices. Owing to the intrinsic non-layer structure, it remains challenging to synthesize molecularly thin CH3NH3PbX3 with large size. Here, w e report a low-cost and highly efficient fabrication route to obtain large-scale single-crystalline 2D CH3NH3PbX3 perovskites on a mica substrate via liquid epitaxy. The 2D perovskite is characterized as 8 nm in thickness and hundreds of micrometers in lateral size. First-principles calculations suggest the strong potassium-halogen interactions at the perovskite/mica interface lower the interface energy of perovskites, driving their fast in-plane growth. Spectroscopic investigations reveal 2D CH3NH3PbBr3 possess small exciton binding energy of 30 meV, allowing a superior visible-light photodetector with a photoresponsivity of 126 A/W and a bandwidth exceeded 80 kHz. These features demonstrate that liquid epitaxy is a bottom-up approach to fabricate the non-layer structured 2D perovskites, which offer a new material platform for the device applications and fundamental investigations.
Stanene (single-layer grey tin), with an electronic structure akin to that of graphene but exhibiting a much larger spin-orbit gap, offers a promising platform for room-temperature electronics based on the quantum spin Hall (QSH) effect. This materia l has received much theoretical attention, but a suitable substrate for stanene growth that results in an overall gapped electronic structure has been elusive; a sizable gap is necessary for room-temperature applications. Here, we report a study of stanene epitaxially grown on the (111)B-face of indium antimonide (InSb). Angle-resolved photoemission spectroscopy (ARPES) measurements reveal a gap of 0.44 eV, in agreement with our first-principles calculations. The results indicate that stanene on InSb(111) is a strong contender for electronic QSH applications.
The emergence of two-dimensional (2D) materials launched a fascinating frontier of flatland electronics. Most crystalline atomic layer materials are based on layered van der Waals materials with weak interlayer bonding, which naturally leads to therm odynamically stable monolayers. We report the synthesis of a 2D insulator comprised of a single atomic sheet of honeycomb structure BeO (h-BeO), although its bulk counterpart has a wurtzite structure. The h-BeO is grown by molecular beam epitaxy (MBE) on Ag(111) thin films that are conveniently grown on Si(111) wafers. Using scanning tunneling microscopy and spectroscopy (STM/S), the honeycomb BeO lattice constant is determined to be 2.65 angstrom with an insulating band gap of 6 eV. Our low energy electron diffraction (LEED) measurements indicate that the h-BeO forms a continuous layer with good crystallinity at the millimeter scale. Moire pattern analysis shows the BeO honeycomb structure maintains long range phase coherence in atomic registry even across Ag steps. We find that the interaction between the h-BeO layer and the Ag(111) substrate is weak by using STS and complimentary density functional theory calculations. We not only demonstrate the feasibility of growing h-BeO monolayers by MBE, but also illustrate that the large-scale growth, weak substrate interactions, and long-range crystallinity make h-BeO an attractive candidate for future technological applications. More significantly, the ability to create a stable single crystalline atomic sheet without a bulk layered counterpart is an intriguing approach to tailoring novel 2D electronic materials.
Understanding the microscopic mechanism of chemical vapor deposition (CVD) growth of two-dimensional molybdenum disulfide (2D MoS2) is a fundamental issue towards the function-oriented controlled growth. In this work, we report results on revealing t he growth kinetics of 2D MoS2 via capturing the nucleation seed, evolution morphology, edge structure and terminations at the atomic scale during CVD growth using the transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) studies. The direct growth of few- and mono-layer MoS2 onto graphene based TEM grids allow us to perform the subsequent TEM characterization without any solution-based transfer. Two forms of seeding centers are observed during characterizations: (i) Mo-oxysulfide (MoOxS2-y) nanoparticles either in multi-shelled fullerene-like structures or in compact nanocrystals for the growth of fewer-layer MoS2; (ii) Mo-S atomic clusters in case of monolayer MoS2. In particular, for the monolayer case, at the early stage growth, the morphology appears in irregular polygon shape comprised with two primary edge terminations: S-Mo Klein edge and Mo zigzag edge, approximately in equal numbers, while as the growth proceeds, the morphology further evolves into near-triangle shape in which Mo zigzag edge predominates. Results from density-functional theory calculations are also consistent with the inferred growth kinetics, and thus supportive to the growth mechanism we proposed. In general, the growth mechanisms found here should also be applicable in other 2D materials, such as MoSe2, WS2 and WSe2 etc.
CONSPECTUS: Two-dimensional (2D) compound materials are promising materials for use in electronics, optoelectronics, flexible devices, etc. because they are ultrathin and cover a wide range of properties. Among all methods to prepare 2D materials, ch emical vapor deposition (CVD) is promising because it produces materials with a high quality and reasonable cost. So far, much efforts have been made to produce 2D compound materials with large domain size, controllable number of layers, fast-growth rate, and high quality features, etc. However, due to the complicated growth mechanism like sublimation and diffusion processes of multiple precursors, maintaining the controllability, repeatability, and high quality of CVD grown 2D binary and ternary materials is still a big challenge, which prevents their widespread use. Here, taking 2D transition metal dichalcogenides (TMDCs) as examples, we review current progress and highlight some promising growth strategies for the growth of 2D compound materials. The key technology issues which affect the CVD process, including non-metal precursor, metal precursor, substrate engineering, temperature, and gas flow, are discussed. Also, methods in improving the quality of CVD-grown 2D materials and current understanding on their growth mechanism are highlighted. Finally, challenges and opportunities in this field are proposed. We believe this review will guide the future design of controllable CVD systems for the growth of 2D compound materials with good controllability and high quality, laying the foundations for their potential applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا