ﻻ يوجد ملخص باللغة العربية
We present time- and angle-resolved photoemission spectroscopy measurements on the charge density wave system CeTe$_{3}$. Optical excitation transiently populates the unoccupied band structure and reveals a gap size of 2$Delta$ = 0.59 eV. The occupied Te-5p band dispersion is coherently modified by three modes at $Omega_{1}$ = 2.2 THz, $Omega_{2}$ = 2.7 THz and $Omega_{3}$ = 3 THz. All three modes lead to small rigid energy shifts whereas $Delta$ is only affected by $Omega_{1}$ and $Omega_{2}$. Their spatial polarization is analyzed by fits of a transient model dispersion and DFT frozen phonon calculations. We conclude that the modes $Omega_{1}$ and $Omega_{2}$ result from in-plane ionic lattice motions, which modulate the charge order, and that $Omega_{3}$ originates from a generic out-of-plane $A_{1g}$ phonon. We thereby demonstrate how the rich information from trARPES allows identification of collective modes and their spatial polarization, which explains the mode-dependent coupling to charge order.
Charge density waves (CDWs) underpin the electronic properties of many complex materials. Near-equilibrium CDW order is linearly coupled to a periodic, atomic-structural distortion, and the dynamics is understood in terms of amplitude and phase modes
Topologically nontrivial materials host protected edge states associated with the bulk band inversion through the bulk-edge correspondence. Manipulating such edge states is highly desired for developing new functions and devices practically using the
We present a complementary experimental and theoretical investigation of relaxation dynamics in the charge-density-wave (CDW) system TbTe$_3$ after ultrafast optical excitation. Using time- and angle-resolved photoemission spectroscopy, we observe an
Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structure. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray and elect
The local structure of CeTe3 in the incommensurate charge density wave (IC-CDW) state has been obtained using atomic pair distribution function (PDF) analysis of x-ray diffraction data. Local atomic distortions in the Te-nets due to the CDW are large