ﻻ يوجد ملخص باللغة العربية
We have performed a new abundance analysis of Carina Red Giant (RG) stars from spectroscopic data collected with UVES (high resolution) and FLAMES/GIRAFFE (high and medium resolution) at ESO/VLT. The former sample includes 44 RGs, while the latter consists of 65 (high) and ~800 (medium resolution) RGs, covering a significant fraction of the galaxys RG branch (RGB), and red clump stars. To improve the abundance analysis at the faint magnitude limit, the FLAMES/GIRAFFE data were divided into ten surface gravity and effective temperature bins. The spectra of the stars belonging to the same gravity/temperature bin were stacked. This approach allowed us to increase by at least a factor of five the signal-to-noise ratio in the faint limit (V>20.5mag). We took advantage of the new photometry index cU,B,I introduced by Monelli et al. (2014), as an age and probably a metallicity indicator, to split stars along the RGB. These two stellar populations display distinct [Fe/H] and [Mg/H] distributions: their mean Fe abundances are -2.15$pm$0.06dex (sig=0.28), and -1.75$pm$0.03dex (sig=0.21), respectively. The two iron distributions differ at the 75% level. This supports preliminary results by Lemasle et al. (2012) and by Monelli et al. (2014). Moreover, we found that the old and intermediate-age stellar populations have mean [Mg/H] abundances of -1.91$pm$0.05dex (sig=0.22) and -1.35$pm$0.03dex (sig=0.22); these differ at the 83% level. Carinas {alpha}-element abundances agree, within 1sigma, with similar abundances for field Halo stars and for cluster (Galactic, Magellanic) stars. The same outcome applies to nearby dwarf spheroidals and ultra-faint dwarf galaxies, in the iron range covered by Carina stars. Finally, we found evidence of a clear correlation between Na and O abundances, thus suggesting that Carinas chemical enrichment history is quite different than in the globular clusters.
We have obtained high-resolution spectroscopy of ten red giants in the Carina dwarf spheroidal (dSph) with UVES at the ESO/VLT. Here we present the abundances of O,Na,Mg,Si,Ca,Ti and Fe. By comparing the iron abundances [Fe/H] with calcium triplet (C
A new research project on spectral analysis that aims to characterize the vertical stratification of element abundances in stellar atmospheres of chemically peculiar (CP) stars is discussed in detail. Some results on detection of vertical abundance s
We present [Fe/H] and [$alpha$/Fe] abundances, derived using spectral synthesis techniques, for stars in M31s outer stellar halo. The 21 [Fe/H] measurements and 7 [$alpha$/Fe] measurements are drawn from fields ranging from 43 to 165 kpc in projected
We provide the largest and most homogeneous sample of $alpha$-element (Mg, Ca, Ti) and iron abundances for field RR Lyrae (RRLs, 162 variables) by using high-resolution spectra. The current measurements were complemented with similar abundances avail
Measurements of [Fe/H] and [$alpha$/Fe] can probe the minor merging history of a galaxy, providing a direct way to test the hierarchical assembly paradigm. While measurements of [$alpha$/Fe] have been made in the stellar halo of the Milky Way, little