ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Use of Field RR Lyrae as Galactic Probes. III. The $alpha$-element abundances

158   0   0.0 ( 0 )
 نشر من قبل Vittorio Francesco Braga
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Crestani




اسأل ChatGPT حول البحث

We provide the largest and most homogeneous sample of $alpha$-element (Mg, Ca, Ti) and iron abundances for field RR Lyrae (RRLs, 162 variables) by using high-resolution spectra. The current measurements were complemented with similar abundances available in the literature for 46 field RRLs brought to our metallicity scale. We ended up with a sample of old (t$ge$ 10 Gyr), low-mass stellar tracers (208 RRLs: 169 fundamental, 38 first overtone, 1 mixed mode) covering three dex in iron abundance (-3.00$le$[Fe/H]$le$0.24). We found that field RRLs are $sim$0.3 dex more $alpha$-poor than typical Halo tracers in the metal-rich regime, ([Fe/H]$ge$-1.2) while in the metal-poor regime ([Fe/H]$le$-2.2) they seem to be on average $sim$0.1 dex more $alpha$-enhanced. This is the first time that the depletion in $alpha$-elements for solar iron abundances is detected on the basis of a large, homogeneous and coeval sample of old stellar tracers. Interestingly, we also detected a close similarity in the [$alpha$/Fe] trend between $alpha$-poor, metal-rich RRLs and red giants (RGs) in the Sagittarius dwarf galaxy as well as between $alpha$-enhanced, metal-poor RRLs and RGs in ultra faint dwarf galaxies. These results are supported by similar elemental abundances for 46 field Horizontal Branch (HB) stars. These stars share with RRLs the same evolutionary phase and the same progenitors. This evidence further supports the key role that old stellar tracers play in constraining the early chemical enrichment of the Halo and, in particular, in investigating the impact that dwarf galaxies have had in the mass assembly of the Galaxy.



قيم البحث

اقرأ أيضاً

We collected the largest spectroscopic catalog of RR Lyrae (RRLs) including $approx$20,000 high-, medium- and low-resolution spectra for $approx$10,000 RRLs. We provide the analytical forms of radial velocity curve (RVC) templates. These were built u sing 36 RRLs (31 fundamental -- split into three period bins -- and 5 first overtone pulsators) with well-sampled RVCs based on three groups of metallic lines (Fe, Mg, Na) and four Balmer lines (H$_alpha$, H$_beta$, H$_gamma$, H$_delta$). We tackled the long-standing problem of the reference epoch to anchor light curve and RVC templates. For the $V$-band, we found that the residuals of the templates anchored to the phase of the mean magnitude along the rising branch are $sim$35% to $sim$45% smaller than those anchored to the phase of maximum light. For the RVC, we used two independent reference epochs for metallic and Balmer lines and we verified that the residuals of the RVC templates anchored to the phase of mean RV are from 30% (metallic lines) up to 45% (Balmer lines) smaller than those anchored to the phase of minimum RV. We validated our RVC templates by using both the single- and the three-phase points approach. We found that barycentric velocities based on our RVC templates are two-three times more accurate than those available in the literature. We applied the current RVC templates to Balmer lines RVs of RRLs in the globular NGC~3201 collected with MUSE at VLT. We found the cluster barycentric RV of $V_{gamma}$=496.89$pm$8.37(error)$pm$3.43 (standard deviation) km/s, which agrees well with literature estimates.
We discuss the largest and most homogeneous spectroscopic dataset of field RR Lyrae variables (RRLs) available to date. We estimated abundances using both high-resolution and low-resolution ({Delta S} method) spectra for fundamental (RRab) and first overtone (RRc) RRLs. The iron abundances for 7,941 RRLs were supplemented with similar literature estimates available, ending up with 9,015 RRLs (6,150 RRab, 2,865 RRc). The metallicity distribution shows a mean value of <[Fe/H]> = -1.51pm0.01, and {sigma}(standard deviation)= 0.41 dex with a long metal-poor tail approaching [Fe/H] = -3 and a sharp metal-rich tail approaching solar iron abundance. The RRab variables are more metal-rich (<[Fe/H]>ab = -1.48pm0.01, {sigma} = 0.41 dex) than RRc variables (<[Fe/H]>c = -1.58pm0.01, {sigma} = 0.40 dex). The relative fraction of RRab variables in the Bailey diagram (visual amplitude vs period) located along the short-period (more metal-rich) and the long-period (more metal-poor) sequences are 80% and 20%, while RRc variables display an opposite trend, namely 30% and 70%. We found that the pulsation period of both RRab and RRc variables steadily decreases when moving from the metal-poor to the metal-rich regime. The visual amplitude shows the same trend, but RRc amplitudes are almost two times more sensitive than RRab amplitudes to metallicity. We also investigated the dependence of the population ratio (Nc/Ntot) of field RRLs on the metallicity and we found that the distribution is more complex than in globular clusters. The population ratio steadily increases from ~0.25 to ~0.36 in the metal-poor regime, it decreases from ~0.36 to ~0.18 for -1.8 < [Fe/H] < -0.9 and it increases to a value of ~0.3 approaching solar iron abundance.
84 - J. Crestani 2020
We performed the largest and most homogeneous spectroscopic survey of field RR Lyraes (RRLs). We secured $approx$6,300 high resolution (HR, R$sim$35,000) spectra for 143 RRLs (111 fundamental, RRab; 32 first overtone, RRc). The atmospheric parameters were estimated by using the traditional approach and the iron abundances were measured by using an LTE line analysis. The resulting iron distribution shows a well defined metal-rich tail approaching solar iron abundance. This suggests that field RRLs experienced a complex chemical enrichment in the early halo formation. We used these data to develop a new calibration of the $Delta$S method. This diagnostic, based on the equivalent widths of CaII K and three Balmer (H$_{delta,gamma,beta}$) lines, traces the metallicity of RRLs. For the first time the new empirical calibration: i) includes spectra collected over the entire pulsation cycle; ii) includes RRc variables; iii) relies on spectroscopic calibrators covering more than three dex in iron abundance; iv) provides independent calibrations based on one/two/three Balmer lines. The new calibrations were applied to both SEGUE-SDSS and degraded HR spectra totalling 6,451 low resolution (LR, R$sim$2,000) spectra for 5,001 RRLs (3,439 RRab, 1,562 RRc). This resulted in an iron distribution with a median of -1.55$pm$0.01 and $sigma$=0.51 dex, in good agreement with literature values. We also found that RRc are 0.10 dex more metal-poor than RRab variables, and have a distribution with a smoother metal-poor tail. This finding supports theoretical prescriptions suggesting a steady decrease in the RRc number when moving from metal-poor to metal-rich stellar environments.
RR Lyrae stars being distance indicators and tracers of old population serve as excellent probes of the structure, formation, and evolution of our Galaxy. Thousands of them are being discovered in ongoing wide-field surveys. The OGLE project conducts the Galaxy Variability Survey with the aim to detect and analyze variable stars, in particular of RRab type, toward the Galactic bulge and disk, covering a total area of 3000 deg^2. Observations in these directions also allow detecting background halo variables and unique studies of their properties and distribution at distances from the Galactic Center to even 40 kpc. In this contribution, we present the first results on the spatial distribution of the observed RRab stars, their metallicity distribution, the presence of multiple populations, and relations with the old bulge. We also show the most recent results from the analysis of RR Lyrae stars of the Sgr dwarf spheroidal galaxy, including its center, the globular cluster M54.
We present our analysis of a large sample (over 150k) of candidate Galactic RR Lyrae (RRL) stars for which we derived high quality photometry at UV, optical and infrared wavelengths, using data from publicly available surveys. For a sub-sample of the se stars (~2,400 fundamental mode field RRLs) we have measured their individual metallicity using the Delta S method, resulting in the largest and most homogeneous spectroscopic data set collected for RRLs. We use this sample to study the metallicity distribution in the Galactic Halo, including the long-standing problem of the Oosterhoff dichotomy among Galactic globular clusters. We also analyze the dependence of their pulsation properties, and in particular the shape of their infrared light curves, from their [Fe/H] abundance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا