ترغب بنشر مسار تعليمي؟ اضغط هنا

Flow organization in non-Oberbeck-Boussinesq Rayleigh-Benard convection in water

485   0   0.0 ( 0 )
 نشر من قبل Enrico Calzavarini
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-Oberbeck-Boussinesq (NOB) effects on the flow organization in two-dimensional Rayleigh-Benard turbulence are numerically analyzed. The working fluid is water. We focus on the temperature profiles, the center temperature, the Nusselt number, and on the analysis of the velocity field. Several velocity amplitudes (or Reynolds numbers) and several kinetic profiles are introduced and studied; these together describe the various features of the rather complex flow organization. The results are presented both as functions of the Rayleigh number Ra (with Ra up to 10^8) for fixed temperature difference (Delta) between top and bottom plates and as functions of Delta (non-Oberbeck-Boussinesqness) for fixed Ra with Delta up to 60 K. All results are consistent with the available experimental NOB data for the center temperature Tc and the Nusselt number ratio Nu_{NOB}/Nu_{OB} (the label OB meaning that the Oberbeck-Boussinesq conditions are valid). Beyond Ra ~ 10^6 the flow consists of a large diagonal center convection roll and two smaller rolls in the upper and lower corners. In the NOB case the center convection roll is still characterized by only one velocity scale.



قيم البحث

اقرأ أيضاً

We numerically analyze Non-Oberbeck-Boussinesq (NOB) effects in two-dimensional Rayleigh-Benard flow in glycerol, which shows a dramatic change in the viscosity with temperature. The results are presented both as functions of the Rayleigh number (Ra) up to $10^8$ (for fixed temperature difference between the top and bottom plates) and as functions of non-Oberbeck-Boussinesqness or NOBness ($Delta$) up to 50 K (for fixed Ra). For this large NOBness the center temperature $T_c$ is more than 5 K larger than the arithmetic mean temperature $T_m$ between top and bottom plate and only weakly depends on Ra. To physically account for the NOB deviations of the Nusselt numbers from its Oberbeck-Boussinesq values, we apply the decomposition of $Nu_{NOB}/Nu_{OB}$ into the product of two effects, namely first the change in the sum of the top and bottom thermal BL thicknesses, and second the shift of the center temperature $T_c$ as compared to $T_m$. While for water the origin of the $Nu$ deviation is totally dominated by the second effect (cf. Ahlers et al., J. Fluid Mech. 569, pp. 409 (2006)) for glycerol the first effect is dominating, in spite of the large increase of $T_c$ as compared to $T_m$.
For rapidly rotating turbulent Rayleigh--Benard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the vertical side wall and enables enhanced heat transport there. Although the azimuthal velocity of the BZF is cyclonic (in the rotating frame), the temperature is an anticyclonic traveling wave of mode one whose signature is a bimodal temperature distribution near the radial boundary. The BZF width is found to scale like $Ra^{1/4}Ek^{2/3}$ where the Ekman number $Ek$ decreases with increasing rotation rate.
We analyse the nonlinear dynamics of the large scale flow in Rayleigh-Benard convection in a two-dimensional, rectangular geometry of aspect ratio $Gamma$. We impose periodic and free-slip boundary conditions in the streamwise and spanwise directions , respectively. As Rayleigh number Ra increases, a large scale zonal flow dominates the dynamics of a moderate Prandtl number fluid. At high Ra, in the turbulent regime, transitions are seen in the probability density function (PDF) of the largest scale mode. For $Gamma = 2$, the PDF first transitions from a Gaussian to a trimodal behaviour, signifying the emergence of reversals of the zonal flow where the flow fluctuates between three distinct turbulent states: two states in which the zonal flow travels in opposite directions and one state with no zonal mean flow. Further increase in Ra leads to a transition from a trimodal to a unimodal PDF which demonstrates the disappearance of the zonal flow reversals. On the other hand, for $Gamma = 1$ the zonal flow reversals are characterised by a bimodal PDF of the largest scale mode, where the flow fluctuates only between two distinct turbulent states with zonal flow travelling in opposite directions.
Rayleigh-Benard (RB) convection with free-slip plates and horizontally periodic boundary conditions is investigated using direct numerical simulations. Two configurations are considered, one is two-dimension (2D) RB convection and the other one three -dimension (3D) RB convection with a rotating axis parallel to the plate. We explore the parameter range of Rayleigh numbers Ra from $10^7 to $10^9$ and Prandtl numbers $Pr$ from $1$ to $100$. We show that zonal flow, which was observed, for example, by Goluskin emph{et al}. emph{J. Fluid. Mech.} 759, 360-385 (2014) for $Gamma=2$, is only stable when $Gamma$ is smaller than a critical value, which depends on $Ra$ and $Pr$. With increasing $Gamma$, we find a second regime in which both zonal flow and different convection roll states can be statistically stable. For even larger $Gamma$, in a third regime, only convection roll states are statistically stable and zonal flow is not sustained. For the 3D simulations, we fix $Ra=10^7$ and $Pr=0.71$, and compare the flow for $Gamma=8$ and $Gamma = 16$. We demonstrate that with increasing aspect ratio $Gamma$, zonal flow, which was observed for small $Gamma=2pi$ by von Hardenberg emph{et al}. emph{Phys. Rev. Lett.} 15, 134501 (2015), completely disappears for $Gamma=16$. For such large $Gamma$ only convection roll states are statistically stable. In between, here for medium aspect ratio $Gamma = 8$, the convection roll state and the zonal flow state are both statistically stable. What state is taken depends on the initial conditions, similarly as we found for the 2D case.
As shown in earlier work (Ahlers et al., J. Fluid Mech. 569, p.409 (2006)), non-Oberbeck Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Benard convection in water and also in glycerol are governed by the temperature depe ndences of the kinematic viscosity and the thermal diffusion coefficient. If the working fluid is ethane close to the critical point the origin of non-Oberbeck-Boussinesq corrections is very different, as will be shown in the present paper. Namely, the main origin of NOB corrections then lies in the strong temperature dependence of the isobaric thermal expansion coefficient beta(T). More precisely, it is the nonlinear T-dependence of the density rho(T) in the buoyancy force which causes another type of NOB effect. We demonstrate that through a combination of experimental, numerical, and theoretical work, the latter in the framework of the extended Prandtl-Blasius boundary layer theory developed in Ahlers et al., J. Fluid Mech. 569, p.409 (2006). The latter comes to its limits, if the temperature dependence of the thermal expension coefficient beta(T) is significant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا