ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma rays from the Galactic Centre region: a review

145   0   0.0 ( 0 )
 نشر من قبل Christopher van Eldik
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During the last decades, increasingly precise astronomical observations of the Galactic Centre (GC) region at radio, infrared, and X-ray wavelengths laid the foundations to a detailed understanding of the high energy astroparticle physics of this most remarkable location in the Galaxy. Recently, observations of this region in high energy (HE, 10 MeV - 100GeV) and very high energy (VHE, > 100 GeV) gamma rays added important insights to the emerging picture of the Galactic nucleus as a most violent and active region where acceleration of particles to very high energies -- possibly up to a PeV -- and their transport can be studied in great detail. Moreover, the inner Galaxy is believed to host large concentrations of dark matter (DM), and is therefore one of the prime targets for the indirect search for gamma rays from annihilating or decaying dark matter particles. In this article, the current understanding of the gamma-ray emission emanating from the GC is summarised and the results of recent DM searches in HE and VHE gamma rays are reviewed.



قيم البحث

اقرأ أيضاً

Seventeen years of hard X-ray observations with the instruments of the INTEGRAL observatory, with a focus on the Milky Way and in particular on the Galactic Centre region, have provided a unique database for exploration of the Galactic population of low-mass X-ray binaries (LMXBs). Our understanding of the diverse energetic phenomena associated with accretion of matter onto neutron stars and black holes has greatly improved. We review the large variety of INTEGRAL based results related to LMXBs. In particular, we discuss the spatial distribution of LMXBs over the Galaxy and their X-ray luminosity function as well as various physical phenomena associated with Atoll and Z sources, bursters, symbiotic X-ray binaries, ultracompact X-ray binaries and persistent black hole LMXBs. We also present an up-to-date catalogue of confirmed LMXBs detected by INTEGRAL, which comprises 166 objects. Last but not least, the long-term monitoring of the Galactic Centre with INTEGRAL has shed light on the activity of Sgr A* in the recent past, confirming previous indications that our supermassive black hole experienced a major accretion episode just ~100 years ago. This exciting topic is covered in this review too.
We demonstrate that young star clusters have a $gamma$-ray surface brightness comparable to that of the diffuse Galactic emission (DGE), and estimate that their sky coverage in the direction of the inner Galaxy exceeds unity. We therefore suggest that they comprise a significant fraction of the DGE.
67 - Subhashis Roy 2004
We have observed the central 45 region of the Galaxy at 620 MHz band of the Giant Metrewave Radio Telescope (GMRT) in radio continuum, and measured the polarisation properties of 64 small diameter background extragalactic sources seen through the -6 deg < l < 6 deg, -2 deg < b < 2 deg region with the Australia Telescope Compact Array (ATCA) and the Very Large Array (VLA). Our 620 MHz observations show that Sgr A* is located behind the HII region Sgr A West. Using the ATCA and the VLA observations, we measured the Faraday rotation measure (RM) of the polarised sources. The measured RMs are mostly positive, and show no reversal of sign across the rotation axis of the Galaxy. This rules out any circularly symmetric model of magnetic field in the region. We estimate the magnetic field strength in the region to be ~10 microGauss, which raises doubts against an all pervasive milliGauss field in the central few hundred pc of the Galaxy.
Aims. The accretion of stars onto the central supermassive black hole at the center of the Milky Way is predicted to generate large fluxes of subrelativistic ions in the Galactic center region. We analyze the intensity, shape and spatial distribution of de-excitation gamma-ray lines produced by nuclear interactions of these energetic particles with the ambient medium. Methods. We first estimate the amount and mean kinetic energy of particles released from the central black hole during star disruption. We then calculate from a kinetic equation the energy and spatial distributions of these particles in the Galactic center region. These particle distributions are then used to derive the characteristics of the main nuclear interaction gamma-ray lines. Results. Because the time period of star capture by the supermassive black hole is expected to be shorter than the lifetime of the ejected fast particles against Coulomb losses, the gamma-ray emission is predicted to be stationary. We find that the nuclear de-excitation lines should be emitted from a region of maximum 5$^circ$ angular radius. The total gamma-ray line flux below 8 MeV is calculated to be $approx10^{-4}$ photons cm$^{-2}$ s$^{-1}$. The most promising lines for detection are those at 4.44 and $sim$6.2 MeV, with a predicted flux in each line of $approx$$10^{-5}$ photons cm$^{-2}$ s$^{-1}$. Unfortunately, it is unlikely that this emission can be detected with the INTEGRAL observatory. But the predicted line intensities appear to be within reach of future gamma-ray space instruments. A future detection of de-excitation gamma-ray lines from the Galactic center region would provide unique information on the high-energy processes induced by the central supermassive black hole and the physical conditions of the emitting region.
In this contribution we model the non-thermal emission (from radio to gamma-rays) produced in the compact (and recently detected) colliding wind region in the multiple stellar system Cyg OB2 #5. We focus our study on the detectability of the produced gamma-rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا