ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Interaction Gamma-Ray Lines from the Galactic Center Region

119   0   0.0 ( 0 )
 نشر من قبل Chung-Ming Ko
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. The accretion of stars onto the central supermassive black hole at the center of the Milky Way is predicted to generate large fluxes of subrelativistic ions in the Galactic center region. We analyze the intensity, shape and spatial distribution of de-excitation gamma-ray lines produced by nuclear interactions of these energetic particles with the ambient medium. Methods. We first estimate the amount and mean kinetic energy of particles released from the central black hole during star disruption. We then calculate from a kinetic equation the energy and spatial distributions of these particles in the Galactic center region. These particle distributions are then used to derive the characteristics of the main nuclear interaction gamma-ray lines. Results. Because the time period of star capture by the supermassive black hole is expected to be shorter than the lifetime of the ejected fast particles against Coulomb losses, the gamma-ray emission is predicted to be stationary. We find that the nuclear de-excitation lines should be emitted from a region of maximum 5$^circ$ angular radius. The total gamma-ray line flux below 8 MeV is calculated to be $approx10^{-4}$ photons cm$^{-2}$ s$^{-1}$. The most promising lines for detection are those at 4.44 and $sim$6.2 MeV, with a predicted flux in each line of $approx$$10^{-5}$ photons cm$^{-2}$ s$^{-1}$. Unfortunately, it is unlikely that this emission can be detected with the INTEGRAL observatory. But the predicted line intensities appear to be within reach of future gamma-ray space instruments. A future detection of de-excitation gamma-ray lines from the Galactic center region would provide unique information on the high-energy processes induced by the central supermassive black hole and the physical conditions of the emitting region.



قيم البحث

اقرأ أيضاً

118 - C. B. Adams , W. Benbow , A. Brill 2021
The Galactic Center (GC) region hosts a variety of powerful astronomical sources and rare astrophysical processes that emit a large flux of non-thermal radiation. The inner 375 pc x 600 pc region, called the Central Molecular Zone, is home to the sup ermassive black hole Sagittarius A*, massive cloud complexes, and particle accelerators such as supernova remnants. We present the results of our improved analysis of the very-high-energy (VHE) gamma-ray emission above 2 TeV from the GC using 125 hours of data taken with the VERITAS imaging-atmospheric Cherenkov telescope between 2010 and 2018. The central source VER J1745-290, consistent with the position of Sagittarius A*, is detected at a significance of 38 standard deviations above the background level $(38sigma)$, and we report its spectrum and light curve. Its differential spectrum is consistent with a power law with exponential cutoff, with a spectral index of $2.12^{+0.22}_{-0.17}$, a flux normalization at 5.3 TeV of $1.27^{+0.22}_{-0.23}times 10^{-13}$ TeV-1 cm-2 s-1, and cutoff energy of $10.0^{+4.0}_{-2.0}$ TeV. We also present results on the diffuse emission near the GC, obtained by combining data from multiple regions along the GC ridge which yield a cumulative significance of $9.5sigma$. The diffuse GC ridge spectrum is best fit by a power law with a hard index of 2.19 $pm$ 0.20, showing no evidence of a cutoff up to 40 TeV. This strengthens the evidence for a potential accelerator of PeV cosmic rays being present in the GC. We also provide spectra of the other sources in our field of view with significant detections, composite supernova remnant G0.9+0.1 and HESS J1746-285.
We provide CTA sensitivities to Dark Matter (DM) annihilation in $gamma$-ray lines, from the observation of the Galactic Center (GC) as well as, for the first time, of dwarf Spheroidal galaxies (dSphs). We compare the GC reach with that of dSphs as a function of a putative core radius of the DM distribution, which is itself poorly known. We find that the currently best dSph candidates constitute a more promising target than the GC, for core radii of one to a few kpc. We use the most recent instrument response functions and background estimations by CTA, on top of which we add the diffuse photon component. Our analysis is of particular interest for TeV-scale electroweak multiplets as DM candidates, such as the supersymmetric Wino and the Minimal Dark Matter fiveplet, whose predictions we compare with our projected sensitivities.
We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6-2858 (or 3FGL J1745.6-2859c) in the Galactic Center and the diffuse hard X-ray component recently found by NuSTAR, as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons or a combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that in the case of pure hadronic models the expected flux of hard X-ray emission is too low. Despite protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of continuous supply model the ionization rate of molecular hydrogen may significantly exceed the observed value.
Diffuse X-rays from the Galactic center (GC) region were found to exhibit many K-shell lines from iron and nickel atoms in the 6--9 keV band. The strong emission lines seen in the spectrum are neutral iron K$alpha$ at 6.4~keV, He-like iron K$alpha$ a t 6.7~keV, H-like iron Ly$alpha$ at 6.9~keV, and He-like iron K$beta$ at 7.8~keV. Among them, the 6.4~keV emission line is a probe of non-thermal phenomena. We have detected strong 6.4~keV emission in several giant molecular clouds, some of which were newly discovered by Suzaku. All the spectra exhibit large equivalent widths of 1-2~keV and absorption columns of $2-10times 10^{23}{rm H cm}^{-2}$. We found time variability of diffuse 6.4~keV emission in the Sgr B2 region comparing the maps and spectra obtained from 1994 to 2005 with ASCA, Chandra, XMM-Newton and Suzaku. We also report discovery of K$alpha$ lines of neutral argon, calcium, chrome, and manganese atoms in the Sgr~A region. We show that the equivalent width of the 6.4~keV emission line detected in X-ray faint region against the 6.4 keV-associated continuum (power-law component) is $sim 800 {rm eV}$. These features are naturally explained by the X-ray reflection nebula scenario rather than the low energy cosmic-ray electrons scenario. On the other hand, a 6.4~keV clump, G~0.162$-$0.217, discovered at the south end of the Radio Arc has a small equivalent width of 6.4~keV emission line of $sim200 {rm eV}$. The Radio Arc is a site of relativistic electrons. Thus, it is conceivable that the X-rays of G~0.162$-$0.217 are due to low energy cosmic-ray electrons
Studies of Fermi data indicate an excess of GeV gamma rays around the Galactic center (GC), possibly due to dark matter. We show that young gamma-ray pulsars can yield a similar signal. First, a high concentration of GC supernovae naturally leads to a population of kicked pulsars symmetric about the GC. Second, while very-young pulsars with soft spectra reside near the Galactic plane, pulsars with spectra that have hardened with age accumulate at larger angles. This combination, including unresolved foreground pulsars, traces the morphology and spectrum of the Excess.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا