ﻻ يوجد ملخص باللغة العربية
We study the dynamics of skyrmions in Dzyaloshinskii-Moriya materials with easy-axis anisotropy. An important link between topology and dynamics is established through the construction of unambiguous conservation laws obtained earlier in connection with magnetic bubbles and vortices. In particular, we study the motion of a topological skyrmion with skyrmion number $Q=1$ and a non-topological skyrmionium with $Q=0$ under the influence of an external field gradient. The $Q=1$ skyrmion undergoes Hall motion perpendicular to the direction of the field gradient with a drift velocity proportional to the gradient. In contrast, the non-topological $Q=0$ skyrmionium is accelerated in the direction of the field gradient, thus exhibiting ordinary Newtonian motion. When the external field is switched off the $Q=1$ skyrmion is spontaneously pinned around a fixed guiding center, whereas the $Q=0$ skyrmionium moves with constant velocity $v$. We give a systematic calculation of a skyrmionium traveling with any constant velocity $v$ that is smaller than a critical velocity $v_c$.
We study the dynamics of skyrmions under spin-transfer torque in Dzyaloshinskii-Moriya materials with easy-axis anisotropy. In particular, we study the motion of a topological skyrmion with skyrmion number $Q=1$ and a non-topological skyrmionium with
We show that chiral symmetry breaking enables traveling domain wall solution for the conservative Landau-Lifshitz equation of a uniaxial ferromagnet with Dzyaloshinskii-Moriya interaction. In contrast to related domain wall models including stray-fie
We find numerically skyrmionic textures with skyrmion number Q=0 in ferromagnets with the Dzyaloshinskii-Moriya interaction and perpendicular anisotropy. These have the form of a skyrmion-antiskyrmion pair and may be called chiral droplets. They are
The anomalous Hall effect has been indispensable in our understanding of numerous magnetic phenomena. This concerns both ferromagnetic materials, as well as diverse classes of antiferromagnets, where in addition to the anomalous and crystal Hall effe
The understanding of how spins move at pico- and femtosecond time scales is the goal of much of modern research in condensed matter physics, with implications for ultrafast and more energy-efficient data storage. However, the limited comprehension of