ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibria, Dynamics and Current Sheets Formation in Magnetically Confined Coronae

195   0   0.0 ( 0 )
 نشر من قبل Franco Rappazzo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. F. Rappazzo




اسأل ChatGPT حول البحث

The dynamics of magnetic fields in closed regions of solar and stellar coronae are investigated with a reduced magnetohydrodynamic (MHD) model in the framework of Parker scenario for coronal heating. A novel analysis of reduced MHD equilibria shows that their magnetic fields have an asymmetric structure in the axial direction with variation length-scale $z_ell sim ell B_0/b$, where $B_0$ is the intensity of the strong axial guide field, $b$ that of the orthogonal magnetic field component, and $ell$ the scale of $mathbf{b}$. Equilibria are then quasi-invariant along the axial direction for variation scales larger than approximatively the loop length $z_ell gtrsim L_z$, and increasingly more asymmetric for smaller variation scales $z_ell lesssim L_z$. The $critical$ $length$ $z_ell sim L_z$ corresponds to the magnetic field intensity threshold $b sim ell B_0/L_z$. Magnetic fields stressed by photospheric motions cannot develop strong axial asymmetries. Therefore fields with intensities below such threshold evolve quasi-statically, readjusting to a nearby equilibrium, without developing nonlinear dynamics nor dissipating energy. But stronger fields cannot access their corresponding asymmetric equilibria, hence they are out-of-equilibrium and develop nonlinear dynamics. The subsequent formation of current sheets and energy dissipation is $necessary$ for the magnetic field to relax to equilibrium, since dynamically accessible equilibria have variation scales larger than the loop length $z_ell gtrsim L_z$, with intensities smaller than the threshold $b lesssim ell B_0/L_z$. The dynamical implications for magnetic fields of interest to solar and stellar coronae are investigated numerically and the impact on coronal physics discussed.



قيم البحث

اقرأ أيضاً

We investigate the dynamical evolution of magnetic fields in closed regions of solar and stellar coronae. To understand under which conditions current sheets form, we examine dissipative and ideal reduced magnetohydrodynamic models in cartesian geome try, where two magnetic field components are present: the strong guide field $B_0$, extended along the axial direction, and the dynamical orthogonal field $mathbf{b}$. Magnetic field lines thread the system along the axial direction, that spans the length $L$, and are line-tied at the top and bottom plates. The magnetic field $b$ initially has only large scales, with its gradient (current) length-scale of order $ell_b$. We identify the magnetic intensity threshold $b/B_0 sim ell_b/L$. For values of $b$ below this threshold, field-line tension inhibits the formation of current sheets, while above the threshold they form quickly on fast ideal timescales. In the ideal case, above the magnetic threshold, we show that current sheets thickness decreases in time until it becomes smaller than the grid resolution, with the analyticity strip width $delta$ decreasing at least exponentially, after which the simulations become under-resolved.
We use a numerical nonlinear multigrid magnetic relaxation technique to investigate the generation of current sheets in three-dimensional magnetic flux braiding experiments. We are able to catalogue the relaxed nonlinear force-free equilibria resulti ng from the application of deformations to an initially undisturbed region of plasma containing a uniform, vertical magnetic field. The deformations are manifested by imposing motions on the bounding planes to which the magnetic field is anchored. Once imposed the new distribution of magnetic footpoints are then taken to be fixed, so that the rest of the plasma must then relax to a new equilibrium configuration. For the class of footpoint motions we have examined, we find that singular and nonsingular equilibria can be generated. By singular we mean that within the limits imposed by numerical resolution we find that there is no convergence to a well-defined equilibrium as the number of grid points in the numerical domain is increased. These singular equilibria contain current sheets of ever-increasing current intensity and decreasing width; they occur when the footpoint motions exceed a certain threshold, and must include both twist and shear to be effective. On the basis of these results we contend that flux braiding will indeed result in significant current generation. We discuss the implications of our results for coronal heating.
The NASA Magnetospheric Multiscale mission has made in situ diffusion region and kinetic-scale resolution measurements of asymmetric magnetic reconnection for the first time, in the Earths magnetopause. The principal theoretical tool currently used t o model collisionless asymmetric reconnection is particle-in-cell simulations. Many particle-in-cell simulations of asymmetric collisionless reconnection start from an asymmetric Harris-type magnetic field but with distribution functions that are not exact equilibrium solutions of the Vlasov equation. We present new and exact equilibrium solutions of the Vlasov-Maxwell system that are self-consistent with one-dimensional asymmetric current sheets, with an asymmetric Harris-type magnetic field profile, plus a constant nonzero guide field. The distribution functions can be represented as a combination of four shifted Maxwellian distribution functions. This equilibrium describes a magnetic field configuration with more freedom than the previously known exact solution and has different bulk flow properties.
Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form m agnetic flux ropes and allow CMEs to escape. Structures that appear between flare loops and CME cores in optical, UV, EUV and X-ray observations have been identified as current sheets and interpreted in terms of the nature of the reconnection process and the energetics of the events. Many of these studies have used UV spectral observations of high temperature emission features in the [Fe XVIII] and Si XII lines. In this paper we discuss several surprising cases in which the [Fe XVIII] and Si XII emission peaks are spatially offset from each other. We discuss interpretations based on asymmetric reconnection, on a thin reconnection region within a broader streamer-like structure, and on projection effects. Some events seem to be easily interpreted as projection of a sheet that is extended along the line of sight that is viewed an angle, but a physical interpretation in terms of asymmetric reconnection is also plausible. Other events favor an interpretation as a thin current sheet embedded in a streamer-like structure.
374 - Asif ud-Doula 2015
A subset (~ 10%) of massive stars present strong, globally ordered (mostly dipolar) magnetic fields. The trapping and channeling of their stellar winds in closed magnetic loops leads to magnetically confined wind shocks (MCWS), with pre-shock flow sp eeds that are some fraction of the wind terminal speed. These shocks generate hot plasma, a source of X-rays. In the last decade, several developments took place, notably the determination of the hot plasma properties for a large sample of objects using XMM-Newton and Chandra, as well as fully self-consistent MHD modelling and the identification of shock retreat effects in weak winds. Despite a few exceptions, the combination of magnetic confinement, shock retreat and rotation effects seems to be able to account for X-ray emission in massive OB stars. Here we review these new observational and theoretical aspects of this X-ray emission and envisage some perspectives for the next generation of X-ray observatories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا