ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial Offsets in Flare-CME Current Sheets

95   0   0.0 ( 0 )
 نشر من قبل John C. Raymond
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form magnetic flux ropes and allow CMEs to escape. Structures that appear between flare loops and CME cores in optical, UV, EUV and X-ray observations have been identified as current sheets and interpreted in terms of the nature of the reconnection process and the energetics of the events. Many of these studies have used UV spectral observations of high temperature emission features in the [Fe XVIII] and Si XII lines. In this paper we discuss several surprising cases in which the [Fe XVIII] and Si XII emission peaks are spatially offset from each other. We discuss interpretations based on asymmetric reconnection, on a thin reconnection region within a broader streamer-like structure, and on projection effects. Some events seem to be easily interpreted as projection of a sheet that is extended along the line of sight that is viewed an angle, but a physical interpretation in terms of asymmetric reconnection is also plausible. Other events favor an interpretation as a thin current sheet embedded in a streamer-like structure.



قيم البحث

اقرأ أيضاً

356 - B. Vrv{s}nak 2009
Eruption of a coronal mass ejection (CME) drags and opens the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and the field relaxation by magnetic reconnection. We analyze physical characteristics of ray-lik e coronal features formed in the aftermath of CMEs, to check if the interpretation of this phenomenon in terms of reconnecting current sheet is consistent with the observations. The study is focused on measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of rays indicates that they occur as a consequence of Petschek-like reconnection in the large scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km s$^{-1}$, consistent with the narrow opening-angle of rays, adding up to a few degrees. The density of rays is an order of magnitude larger than in the ambient corona. The density-excess measurements are compared with the results of the analytical model in which the Petschek-like reconnection geometry is applied to the vertical current sheet, taking into account the decrease of the external coronal density and magnetic field with height. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to larger heights by the reconnection outflow.
303 - N. Nishizuka 2013
We report a detailed examination of the fine structure inside flare ribbons and the temporal evolution of this fine structure during the X2.5 solar flare that occurred on 2004 November 10. We examine elementary bursts of the C IV (1550{AA}) emission lines seen as local transient brightenings inside the flare ribbons in the ultraviolet (1600{AA}) images taken with Transition Region and Coronal Explorer, and we call them C IV kernels. This flare was also observed in Ha with the Sartorius 18 cm Refractor telescope at Kwasan observatory, Kyoto University, and in hard X-rays (HXR) with Reuven Ramaty High Energy Solar Spectroscopic Imager. Many C IV kernels, whose sizes were comparable to or less than 2, were found to brighten successively during the evolution of the flare ribbon. The majority of them were well correlated with the Ha kernels in both space and time, while some of them were associated with the HXR emission. These kernels were thought to be caused by the precipitation of nonthermal particles at the footpoints of the reconnecting flare loops. The time profiles of the C IV kernels showed intermittent bursts, whose peak intensity, duration, and time interval were well described by power-law distribution functions. This result is interpreted as evidence for self-organized criticality in avalanching behavior in a single flare event, or for fractal current sheets in the impulsive reconnection region.
We present two-dimensional resistive magnetohydrodynamic simulations of line-tied asymmetric magnetic reconnection in the context of solar flare and coronal mass ejection current sheets. The reconnection process is made asymmetric along the inflow di rection by allowing the initial upstream magnetic field strengths and densities to differ, and along the outflow direction by placing the initial perturbation near a conducting wall boundary that represents the photosphere. When the upstream magnetic fields are asymmetric, the post-flare loop structure is distorted into a characteristic skewed candle flame shape. The simulations can thus be used to provide constraints on the reconnection asymmetry in post-flare loops. More hard X-ray emission is expected to occur at the footpoint on the weak magnetic field side because energetic particles are more likely to escape the magnetic mirror there than at the strong magnetic field footpoint. The footpoint on the weak magnetic field side is predicted to move more quickly because of the requirement in two dimensions that equal amounts of flux must be reconnected from each upstream region. The X-line drifts away from the conducting wall in all simulations with asymmetric outflow and into the strong magnetic field region during most of the simulations with asymmetric inflow. There is net plasma flow across the X-line for both the inflow and outflow directions. The reconnection exhaust directed away from the obstructing wall is significantly faster than the exhaust directed towards it. The asymmetric inflow condition allows net vorticity in the rising outflow plasmoid which would appear as rolling motions about the flux rope axis.
Solar flares and coronal mass ejections (CMEs) are closely coupled through magnetic reconnection. CMEs are usually accelerated impulsively within the low solar corona, synchronized with the impulsive flare energy release. We investigate the dynamic e volution of a fast CME and its associated X2.8 flare occurring on 2013 May 13. The CME experiences two distinct phases of enhanced acceleration, an impulsive one with a peak value of ~5 km s$^{-2}$ followed by an extended phase with accelerations up to 0.7 km s$^{-2}$. The two-phase CME dynamics is associated with a two-episode flare energy release. While the first episode is consistent with the standard eruption of a magnetic flux rope, the second episode of flare energy release is initiated by the reconnection of a large-scale loop in the aftermath of the eruption and produces stronger nonthermal emission up to $gamma$-rays. In addition, this long-duration flare reveals clear signs of ongoing magnetic reconnection during the decay phase, evidenced by extended HXR bursts with energies up to 100--300 keV and intermittent downflows of reconnected loops for >4 hours. The observations reveal that the two-step flare reconnection substantially contributes to the two-phase CME acceleration, and the impulsive CME acceleration precedes the most intense flare energy release. The implications of this non-standard flare/CME observation are discussed.
We investigate the relationship between the main acceleration phase of coronal mass ejections (CMEs) and the particle acceleration in the associated flares as evidenced in RHESSI non-thermal X-rays for a set of 37 impulsive flare-CME events. CME peak velocity and peak acceleration yield distinct correlations with various parameters characterizing the flare-accelerated electron spectra. The highest correlation coefficient is obtained for the relation of the CME peak velocity and the total energy in accelerated electrons (c = 0.85), supporting the idea that the acceleration of the CME and the particle acceleration in the associated flare draw their energy from a common source, probably magnetic reconnection in the current sheet behind the erupting structure. In general, the CME peak velocity shows somewhat higher correlations with the non-thermal flare parameters than the CME peak acceleration, except for the spectral index of the accelerated electron spectrum which yields a higher correlation with the CME peak acceleration (c = -0.6), indicating that the hardness of the flare-accelerated electron spectrum is tightly coupled to the impulsive acceleration process of the rising CME structure. We also obtained high correlations between the CME initiation height $h_0$ and the non-thermal flare parameters, with the highest correlation of $h_0$ to the spectral index of flare-accelerated electrons (c = 0.8). This means that CMEs erupting at low coronal heights, i.e. in regions of stronger magnetic fields, are accompanied with flares which are more efficient to accelerate electrons to high energies. In the majority of events (80%), the non-thermal flare emission starts after the CME acceleration (6 min), giving a current sheet length at the onset of magnetic reconnection of 21 pm 7 Mm. The flare HXR peaks are well synchronized with the peak of the CME acceleration profile.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا